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Abstract

Many evolutionary processes affect human genetic variation. One of these processes, consanguin-

ity—mating between closely related individuals—increases the frequency at which identical ge-

nomic segments are inherited along separate paths of descent. This pairing of segments increases

the fraction of the genome that is shared within or between individuals: the fraction that lies in

runs of homozygosity (ROH) or that contains identical-by-descent (IBD) segments. Consanguin-

ity is relatively common globally, with couples who are second cousins (or closer) as well as their

offspring perhaps representing an estimated 10% of the human population. The types and degree

of consanguinity vary widely across cultures and affect patterns of shared segments. This varia-

tion provides an opportunity to study how a cultural practice such as consanguinity can influence

patterns of genetic variation that are observed in the genome.

Genomic sharing, both within and between individuals in a population, can be studied by

noting that ROH and IBD at a genomic site are inversely proportional to its coalescence time:

the time at which a pair of copies of the site find a common ancestor. First-cousin consanguinity

can take one of four forms differing in the configuration of sexes in the pedigree of the male

and female cousins who join in a consanguineous union: patrilateral parallel, patrilateral cross,

matrilateral parallel, and matrilateral cross. Because of the different configurations of sexes in the

pedigree, these four types of first-cousin consanguinity, which are equivalent in their effects on

the autosomes, are expected to have differing effects on coalescence times—and therefore ROH and

IBD—on the X chromosome. Over several chapters, this dissertation models each of these types

of consanguinity to study the effect that each has on X-chromosomal genomic sharing relative to

autosomal genomic sharing.
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vi Abstract

Chapter 1 explores the effect that consanguinity has on mean coalescence times. It demon-

strates that the effect of consanguinity on the X chromosome differs from the autosomal pattern

under matrilateral but not under patrilateral first-cousin mating: for matrilateral first cousins, the

effect of consanguinity in reducing coalescence times is stronger on the X chromosome than on

the autosomes. Chapter 2 solves for the limiting distribution of coalescence times under each type

of consanguinity as well as in an arbitrary mixture of all four types. This chapter shows that for

between-individual coalescence times, each of the first-cousin consanguinity types has a differ-

ent coalescent effective size (given in terms of the consanguinity rate in a population). Chapter

3 then develops a theoretical model for the relationship between pairwise coalescence times on

the X-chromosome and the expected fraction of the X that will be tiled by IBD or ROH, allowing

for the calculation of a mathematical expectation of the X-to-autosomal ratio of ROH or IBD un-

der first-cousin consanguinity. By comparing empirical IBD and ROH ratios in populations with

known rates of consanguinity to these theoretical expectations, this chapter demonstrates the util-

ity of the model in understanding the role of consanguinity in shaping ratios of genomic sharing

between the X chromosome and the autosomes. Finally, chapter 4 shifts to explore the effect that

sample size has on observed patterns of global allelic variation. It introduces a sample-size cor-

rection for comparing rare and common variation across multiple populations when the sample

sizes from these populations differ; this method reveals subtle distinctions that are often not ob-

served in analyses that use the full available sample sizes. In total, these chapters use a mixture of

theoretical coalescent models and empirical data to explore the important role that demographic

phenomena such as consanguinity have in shaping the genome, and they introduce new methods

for refining our understanding of human genetic variation.
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Introduction

There are many evolutionary and demographic processes that shape human genetic variation:

population size, migration, assortative mating, and sex-biases, to name a few. The field of popu-

lation genetics concerns itself with answering questions about these processes using genetic data

collected from many individuals in a population. By studying features of genetic variation, such

as allele frequencies or homozygosity, scientists can make inferences about the strength and effect

of these demographic processes.

One set of demographic processes are those that concern sex-biases. These are processes that

are shaped by sex differences between features of population history such as the number of mat-

ing males and females, rates of male and female migration, and male and female mutation and

recombination rates. These processes are especially interesting because they differ in the signa-

ture they leave on genetic variation on the sex-linked chromosomes (i.e. the X chromosome, the

Y chromosome, and the mitochondria) relative to the autosomes. One sex-specific process, which

I will explore herein, is consanguinity, or matings between closely-related individuals.

Consanguinity has historically been common across human populations. One study estimates

that couples related at a level of second-cousins or closer, as well as their offspring, could represent

up to 10% of the global human population (Bittles and Black, 2010). Different types of consanguin-

ity occur at differing rates across populations, often as a result of various social social structures

and cultural norms (Bittles, 2012). Specifically, first-cousin consanguinity can occur in one of four

configurations depending on the sexes in the pedigree of the male-female consanguineous pair.

These four types are (1) patrilateral parallel, where a man marries his father’s brother’s daughter;

(2) patrilateral cross, where a man marries his father’s sister’s daughter; (3) matrilateral parallel,

1



2 Introduction

where a man marries his mother’s sister’s daughter; and (4) matrilateral cross, where a man mar-

ries his mother’s brother’s daughter. These four types differ in the pathway through which the X

chromosome is inherited, each having a particular effect on genetic variation on the X chromosome

relative to the autosomes.

The inheritance of a segment of the genome through both parents in a consanguineous union

affects the variability of runs of homozygosity (ROH)—long segments of homozygous genotypes

within a single individual—as well identical-by-descent (IBD) segments—segments of genomes that

are shared in long runs between two individuals. Because both types of genomic sharing are in-

herently affected by the path that a lineage takes through a pedigree, the four different types of

first-cousin consanguinity affect segments on the X-chromosome in several different ways. Past

work on consanguinity has shown that ROH and IBD on the autosomes are inherently affected by

these matings of closely related individuals (Severson et al., 2019, 2021). This thesis demonstrates

how consanguinity—specifically sex-biased forms of consanguinity—affects X-chromosomal ge-

nomic sharing.

In chapter 1, I study the effects that consanguinity has on mean coalescence times across the

genome. By noting that the lengths of ROH and IBD at a site are inversely proportional to the

number of generations since the most recent ancestor of two genetic lineages, we study this time

to the most recent common ancestor (𝑇𝑀𝑅𝐶𝐴) directly instead of segment lengths. Using a first-step

analysis on a coalescent model of each type of consanguinity, I demonstrate that there is an effect of

matrilateral parallel and matrilateral-cross but not patrilateral consanguinity on shaping genomic

sharing on the X chromosome. I also demonstrate that there is a stronger effect of matrilateral

first cousin consanguinity in reducing the 𝑇𝑀𝑅𝐶𝐴 on the X chromosome relative to the autosomal

genome.

Next, in chapter 2, I expand beyond this first-step analysis to calculate a full distribution of

coalescence times for each type of first-cousin consanguinity as well as in a model that takes into

account a mixture of all four types of first-cousin consanguinity. This chapter uses a separation-

of-time scales approach to separately consider “fast” events that occur quickly in a coalescent

process as well as “slow” events that take place over a much longer time period. By separating
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these events from each other and analyzing the resulting Markov chains, I solve for the limiting-

distributions for each type of consanguinity in their large-population limits. This computation

demonstrates that each type of first-cousin consanguinity, in its large-population-size limit, is a

standard coalescent process governed by a coalescent effective size that is in turn governed by the

consanguinity rate.

Chapter 3 then uses theory on coalescent times and genomic sharing to establish a formal

relationship between the coalescent models developed in Chapters 1 and 2 and the average length

of ROH and IBD in a given population. In this chapter, I develop theory about the null ratio of

IBD and ROH sharing on the X chromosome relative to the autosomes as well as the effect that

each type of consanguinity has on shifting this ratio away from its null value. I then explore

empirically calculated proportions of IBD and ROH on the X chromosome and the autosomes in

a set of populations for which there exists historical data on rates of each type of first-cousin

consanguinity.

Finally, in chapter 4, I explore a distinct but related topic in the study of population-genetic

variation. Here, I discuss an approach to quantifying differences in allele frequencies across pop-

ulations when sample sizes differ in magnitude. This chapter builds on a long history of work that

explores the extent to which genetic variation differs within and between populations. I develop a

rarefaction-based sample-size correction that allows for accurate comparison of differences in rare

and common genetic variants across populations. By using a global genetic dataset, I show that

correcting for sample-size differences can reveal subtle signals that are not apparent when sample

sizes differ greatly or when a very-low frequency threshold is used to define a rare variant.

Collectively this body of work uses several theoretical and empirical techniques to explore the

role of demographic phenomena in shaping human genetic variation. Chapters 1–3 offer insights

into the effect of sex-biased consanguinity on runs of homozygosity and identity by descent. Re-

cently, there has been renewed interest in long runs of homozygosity due to their connection to

Mendelian (Bittles, 2001; Woods et al., 2006) and complex (Bittles and Black, 2010; Ceballos et al.,

2018; Clark et al., 2019) disease risk. By providing new insights into small populations and how

specific types of relatedness affect these runs of homozygosity, this dissertation contributes a novel

way of conceptualizing the connection between human demography—specifically, consanguinity
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and population size—and rare disease. Similarly, chapter 4 offers a new perspective on the techni-

cal consequences of comparing genetic variation across groups when sample-sizes differ. Studies

of ancient DNA often wish to make comparisons between ancient and modern populations (Witt

et al., 2022). Because sample sizes can potentially differ by many orders of magnitude in these com-

parisons, it is important to correct for the effect that these differences will have on their respective

populations’ allele frequencies. Similarly, outside of human genetics, conservation geneticists of-

ten study allele-frequency variation in endangered species for the purpose of actively intervening

in the genetic diversity of those species. Tools such as the one I present in chapter 4 can correct

for size differences in allele-frequency comparisons and help ensure that any interventions made

are as informed and accurate as possible.

Human genetic variation represents an important element in our understanding of the history

and demography of our species. By leveraging theoretical, statistical, and empirical approaches,

this dissertation contributes to advancing this understanding of the forces that shape human evo-

lutionary history.



Chapter 1

The effect of consanguinity on mean

coalescence times on the X

chromosome

The following chapter and figures were originally published as:

Cotter, D. J., A. L. Severson, and N. A. Rosenberg, 2021 The effect of consanguinity on coalescence

times on the X chromosome. Theoretical Population Biology 140: 32–43.

https://doi.org/10.1016/j.tpb.2021.03.004

Abstract

Consanguineous unions increase the frequency at which identical genomic segments are inherited

along separate paths of descent, decreasing coalescence times for pairs of alleles drawn from an

individual who is the offspring of a consanguineous pair. For an autosomal locus, it has recently

been shown that the mean time to the most recent common ancestor (𝑇𝑀𝑅𝐶𝐴) for two alleles in the

same individual and the mean𝑇𝑀𝑅𝐶𝐴 for two alleles in two separate individuals both decrease with

increasing consanguinity in a population. Here, we extend this analysis to the X chromosome, con-

sidering X-chromosomal coalescence times under a coalescent model with diploid, male–female

5

https://doi.org/10.1016/j.tpb.2021.03.004
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mating pairs. We examine four possible first-cousin mating schemes that are equivalent in their

effects on autosomes, but that have differing effects on the X chromosome: patrilateral-parallel,

patrilateral-cross, matrilateral-parallel, and matrilateral-cross. In each mating model, we calcu-

late mean 𝑇𝑀𝑅𝐶𝐴 for X-chromosomal alleles sampled either within or between individuals. We

describe a consanguinity effect on X-chromosomal 𝑇𝑀𝑅𝐶𝐴 that differs from the autosomal pattern

under matrilateral but not under patrilateral first-cousin mating. For matrilateral first cousins, the

effect of consanguinity in reducing 𝑇𝑀𝑅𝐶𝐴 is stronger on the X chromosome than on the auto-

somes, with an increased effect of parallel-cousin mating compared to cross-cousin mating. The

theoretical computations support the utility of the model in understanding patterns of genomic

sharing on the X chromosome.

1.1 Introduction

In consanguineous unions, parents are closely related, producing offspring who inherit identical

genomic segments along both parental lines. Consanguinity is common in human populations;

couples related at a level of second cousins or closer, together with their offspring, might represent

as much as 10% of the global population (Bittles and Black, 2010).

Different forms of consanguinity vary in frequency across human populations, often as a re-

sult of cultural norms concerning preferred mate choices (Bittles, 2012). For example, first-cousin

marriages can follow four distinct patterns, as classified by the sexes of the two sibling parents.

These patterns are named from the perspective of the male in the consanguineous marriage: (1)

patrilateral-parallel, a male marries his father’s brother’s daughter; (2) patrilateral-cross, he mar-

ries his father’s sister’s daughter; (3) matrilateral-parallel, he marries his mother’s sister’s daugh-

ter; and (4) matrilateral-cross, he marries his mother’s brother’s daughter. The “parallel” marriage

patterns refer to same-sex sibling parents and the “cross” patterns refer to opposite-sex sibling

parents.

The inheritance of a genomic segment via both parents due to consanguineous unions has con-

sequences for genomic phenomena such as runs of homozygosity (ROH)—long homozygous seg-

ments in diploid individuals—and sharing between individuals of long identical-by-descent (IBD)
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A B C

Figure 1.1: A diploid mating model for two successive generations. (A) Each generation has 𝑁 monoga-
mous mating pairs, a fraction 𝑐0 of which are sib mating pairs, shaded (𝑁 = 5, 𝑐0 = 0.2). (B) The sibs in
each sib mating pair in the offspring generation (shaded pair in the offspring generation) share a parental
pair from the previous generation. (C) Non-sib mating pairs are associated with two mating pairs from the
previous generation. Note that a pair of parents chosen in the parental generation might itself be a sib pair
(shaded pair in the parental generation). Small squares, males; small circles, females; large circles, mating
pairs. The figure is modified from Severson et al. (2019).

segments. In particular, it is well-known that due to pairing of IBD segments within individuals,

consanguinity increases the frequency and length of ROH (e.g. McQuillan et al., 2008; Kirin et al.,

2010; Pemberton et al., 2012; Kang et al., 2016; Ceballos et al., 2018).

Recently, we have argued that consanguinity also increases the frequency and length of IBD

segments shared between pairs of individuals (Severson et al., 2019). In a model of coalescence in

a diploid population, the mean time to the most recent common ancestor (𝑇𝑀𝑅𝐶𝐴) for a pair of

alleles in separate individuals was seen to decrease with increasing consanguinity. Because ge-

nomic sharing increases with decreasing𝑇𝑀𝑅𝐶𝐴, the reduction in𝑇𝑀𝑅𝐶𝐴 in turn increases genomic

sharing. The interpretation of Severson et al. (2019), established in further detail by Severson et al.

(2021), is that consanguinity decreases effective population size, increasing genomic sharing both

for within-individual ROH and for between-individual IBD segments.

When studying the autosomal genome, the four forms of first-cousin mating—patrilateral-

parallel, patrilateral-cross, matrilateral-parallel, and matrilateral-cross—are indistinguishable in

their effects, as males and females each contribute a copy of the autosomal genome in each gener-

ation. For the X chromosome, however, owing to the fact that the X chromosome is not transmitted

from fathers to sons, the consanguineous pairs in these four types of unions have different levels of

relatedness (Jacquard, 1974; Lange, 2002). Hence, populations with different forms of first-cousin

mating potentially have different patterns for 𝑇𝑀𝑅𝐶𝐴, ROH, and IBD sharing.
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Here, we extend our autosomal model of monogamous diploid mating pairs to consider X-

chromosomal inheritance. We focus our analysis on the four types of first-cousin mating. The

results reveal effects of different types of consanguinity on autosomal and X-chromosomal𝑇𝑀𝑅𝐶𝐴.

1.2 Autosomal results

We extend the framework from Severson et al. (2019), which considers a diploid population of 𝑁

monogamous mating pairs (Figure 1.1). This framework, which allows for a variety of forms of

consanguinity, in turn generalizes a sib mating model from Campbell (2015).

We build on Severson et al. (2019) by explicitly including the sex of the individuals. For autoso-

mal loci, this change adds states to our Markov chain, states that are needed for our computations

with the X chromosome. The addition of the three new states produces results that reduce to those

of Severson et al. (2019). We review these results, and we then examine the effect of consanguinity

on X-chromosomal coalescence times.

The models of Campbell (2015) and Severson et al. (2019) consider alleles in three possible

states: within an individual, in two individuals in a mating pair, and in two individuals in separate

mating pairs. In incorporating sex, we decompose the three states into six (Figure 1.2). Enumerat-

ing these possible states, state 1 is two alleles in a male and state 2 is two alleles in a female. State

3 is two alleles in two different individuals in the same mating pair. States 4, 5, and 6 describe

two alleles in two individuals in different mating pairs, where the two individuals are two males,

a male and a female, and two females, respectively.

We define six random variables to denote coalescence times of two alleles in our six states

(Figure 1.2). 𝑇𝑚 is𝑇𝑀𝑅𝐶𝐴 for two alleles in the same male (state 1) and𝑇𝑓 is𝑇𝑀𝑅𝐶𝐴 for two alleles in

Figure 1.2: Six possible states for two sampled alleles at autosomal loci. Males are squares; females are
circles. State 1: within a male (red). State 2: within a female (blue). State 3: in two individuals in a mating
pair (green). State 4: in two males in different mating pairs (yellow). State 5: in a male and a female in
different mating pairs (orange). State 6: in two females in different mating pairs (purple).
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the same female (state 2). As in Severson et al. (2019),𝑈 is𝑇𝑀𝑅𝐶𝐴 for two alleles in two individuals

in the same mating pair (state 3). Finally, 𝑉𝑚𝑚 is 𝑇𝑀𝑅𝐶𝐴 for two males in separate mating pairs

(state 4),𝑉𝑚𝑓 is𝑇𝑀𝑅𝐶𝐴 for a male and a female in separate mating pairs (state 5), and𝑉𝑓 𝑓 is𝑇𝑀𝑅𝐶𝐴

for two females in separate mating pairs (state 6). We calculate the means 𝔼[𝑇𝑚], 𝔼[𝑇𝑓 ], 𝔼[𝑈 ],

𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ] for autosomal and X-chromosomal loci under sib and first-cousin

mating. States 1 and 2 are “lumped” into one state by Severson et al. (2019), as are states 4, 5, and

6.

1.2.1 Siblings

We follow Campbell (2015) and Severson et al. (2019) to derive equations for mean coalescence

times. In each generation, a constant fraction 𝑐0 of the 𝑁 mating pairs are sib mating pairs. Chance

consanguinity is excluded, so that the remaining 𝑁 (1 − 𝑐0) pairs are not sib mating pairs.

Beginning with 𝑇𝑚 and 𝑇𝑓 , two alleles within the same male (state 1) or female (state 2) must

have been inherited from a single mating pair (state 3) one generation back. We have

𝔼[𝑇𝑚] = 𝔼[𝑇𝑓 ] = 𝔼[𝑈 ] + 1. (1.1)

For two alleles in separate individuals in a mating pair (state 3), the mating pair is a sib mating

pair with probability 𝑐0. Conditional on the individuals in the mating pair being sibs, the sampled

alleles can be inherited from the previous generation in four ways. First, they could coalesce in the

previous generation, an event that occurs with probability 1
4 . Next, they could both be inherited

from the father and not coalesce, an event that has probability 1
8 , giving coalescence time 𝔼[𝑇𝑚]+1.

Similarly, they could both be inherited from the mother and not coalesce, with probability 1
8 and

coalescence time 𝔼[𝑇𝑓 ] + 1. Finally, they could be inherited from two individuals in a mating pair

in the previous generation, with probability 1
2 and coalescence time 𝔼[𝑈 ] + 1.

The event that the mating pair is not a sib mating pair has probability 1 − 𝑐0. Conditional

on this event, the alleles have three possibilities. They arise from two males in separate mating

pairs with probability 1
4 , giving coalescence time 𝔼[𝑉𝑚𝑚] + 1. They are inherited from a male

and a female in separate mating pairs with probability 1
2 , giving coalescence time 𝔼[𝑉𝑚𝑓 ] + 1.
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Lastly, with probability 1
4 , they are inherited from two females in separate mating pairs, giving

coalescence time 𝔼[𝑉𝑓 𝑓 ] + 1. Combining the cases, we have

𝔼[𝑈 ] = 𝑐0

[
1
4
+ 1

8
(𝔼[𝑇𝑚] + 1) + 1

8
(𝔼[𝑇𝑓 ] + 1) + 1

2
(𝔼[𝑈 ] + 1)

]
+ (1 − 𝑐0)

[
1
4
(𝔼[𝑉𝑚𝑚] + 1) + 1

2
(𝔼[𝑉𝑚𝑓 ] + 1) + 1

4
(𝔼[𝑉𝑓 𝑓 ] + 1)

]
. (1.2)

In considering autosomal loci, coalescence patterns for alleles in two individuals in different

mating pairs are the same irrespective of the sexes of the individuals. Hence, equations for𝔼[𝑉𝑚𝑚],

𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ] are the same. Because we draw a parental pair uniformly with replacement

for each individual in the current generation, the probability that, by chance, two individuals

in separate mating pairs are siblings is 1
𝑁

. Conditional on the event that we randomly sample

two siblings, as in Eq. 1.2, the alleles have four possibilities: they coalesce, they come from the

father in the previous generation and do not coalesce, they come from the mother in the previous

generation and do not coalesce, or they come from separate individuals in the previous generation.

The probabilities and coalescence times for these events follow from sib mating in Eq. 1.2.

The event that the two individuals are not siblings occurs with probability 1− 1
𝑁

. Three events

are then possible: the two alleles come from two males in separate mating pairs, from a male and a

female, or from two females. The probabilities and coalescence times for these events follow from

non-sib mating in Eq. 1.2. We have

𝔼[𝑉𝑚𝑚] = 𝔼[𝑉𝑚𝑓 ] = 𝔼[𝑉𝑓 𝑓 ] =
1
𝑁

[
1
4
+ 1

8
(𝔼[𝑇𝑚] + 1) + 1

8
(𝔼[𝑇𝑓 ] + 1) + 1

2
(𝔼[𝑈 ] + 1)

]
+

(
1 − 1

𝑁

) [
1
4
(𝔼[𝑉𝑚𝑚] + 1) + 1

2
(𝔼[𝑉𝑚𝑓 ] + 1) + 1

4
(𝔼[𝑉𝑓 𝑓 ] + 1)

]
. (1.3)

Eqs. 1.1–1.3 form a linear system of equations in six variables, with solution

𝔼[𝑇𝑚] = 𝔼[𝑇𝑓 ] = 4𝑁 (1 − 𝑐0) + 6 (1.4)

𝔼[𝑈 ] = 4𝑁 (1 − 𝑐0) + 5 (1.5)

𝔼[𝑉𝑚𝑚] = 𝔼[𝑉𝑚𝑓 ] = 𝔼[𝑉𝑓 𝑓 ] = 4𝑁
(
1 − 3

4
𝑐0

)
+ 4. (1.6)
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We reduce the model to a model without sexes by collapsing states 1 and 2 into a single state for

two alleles from a single individual (male or female), and by collapsing states 4, 5, and 6 into a

single state for two alleles from individuals of unspecified sex in different mating pairs.

Using 𝑇 to represent 𝑇𝑀𝑅𝐶𝐴 for two alleles sampled in the combined states 1 and 2, Eq. 1.4 gives

𝔼[𝑇 ] = 4𝑁 (1 − 𝑐0) + 6. (1.7)

We can use 𝑉 to represent 𝑇𝑀𝑅𝐶𝐴 for the collapsed state for states 4, 5, and 6. Eq. 1.6 can be

collapsed into

𝔼[𝑉 ] = 4𝑁
(
1 − 3

4
𝑐0

)
+ 4. (1.8)

Eqs. 1.7, 1.5, and 1.8 are equivalent to Eqs. 4, 5, and 6, respectively, of Severson et al. (2019).

Breaking the three states of Severson et al. (2019) into six by consideration of the sexes of individ-

uals provides further detail, but it does not change the quantitative results.

1.2.2 First cousins

Severson et al. (2019) considered first-cousin mating, assuming a constant fraction 𝑐1 in each gen-

eration for the fraction of first-cousin mating pairs in a population, and again assuming that no

chance consanguinity occurs. Rephrasing their results for mean autosomal coalescence times with

a decomposition of states by sex, the derivation otherwise follows Severson et al. (2019), and the

quantitative results are the same. The four types of cousin mating give the same recursions. For

completeness, we include the derivation in Appendix A. We obtain

𝔼[𝑇𝑚] = 𝔼[𝑇𝑓 ] = 4𝑁
(
1 − 1

4
𝑐1

)
+ 10 (1.9)

𝔼[𝑈 ] = 4𝑁
(
1 − 1

4
𝑐1

)
+ 9 (1.10)

𝔼[𝑉𝑚𝑚] = 𝔼[𝑉𝑚𝑓 ] = 𝔼[𝑉𝑓 𝑓 ] = 4𝑁
(
1 − 3

16
𝑐1

)
+ 7. (1.11)
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Severson et al. (2019) noted that 𝔼[𝑉𝑚𝑚] = 𝔼[𝑉𝑚𝑓 ] = 𝔼[𝑉𝑓 𝑓 ] exceeds 𝔼[𝑇𝑚] = 𝔼[𝑇𝑓 ] for

nonzero 𝑐1 and sufficiently large𝑁 . They also observed that in comparison with a non-consanguineous

diploid population of size 2𝑁 , the mean coalescence times are reduced by linear factors, 1− 1
4𝑐1 in

Eqs. 1.9 and 1.10, and 1 − 3
16𝑐1 in Eq. 1.11.

1.2.3 Double first cousins

We can similarly examine double-first-cousin mating, a case not considered by Severson et al.

(2019). We use the six states, with a fraction 𝑐1 of double-first-cousin mating pairs in each gener-

ation. The two types of bilateral cousin mating give the same recursions. The derivation appears

in Appendix B. We obtain

𝔼[𝑇𝑚] = 𝔼[𝑇𝑓 ] = 4𝑁
(
1 − 1

2
𝑐1

)
+ 10 (1.12)

𝔼[𝑈 ] = 4𝑁
(
1 − 1

2
𝑐1

)
+ 9 (1.13)

𝔼[𝑉𝑚𝑚] = 𝔼[𝑉𝑚𝑓 ] = 𝔼[𝑉𝑓 𝑓 ] = 4𝑁
(
1 − 3

8
𝑐1

)
+ 7. (1.14)

The reduction factors due to consanguinity in comparison with a non-consanguineous population

are 1 − 1
2𝑐1 for Eqs. 1.12 and 1.13, and 1 − 3

8𝑐1 for Eq. 1.14.

1.3 X-chromosomal results

We now derive new results for the X chromosome, comparing them to autosomal results. As

before, we consider 𝑁 mating pairs in each generation; the number of alleles in the population

in each generation is 3𝑁 , 2𝑁 in females and 𝑁 in males. Because two sampled X-chromosomal

alleles cannot be in the same male, we remove state 1.

1.3.1 Siblings

For sib mating, as before, let 𝑐0 be the fraction of sib mating pairs each generation. Chance sib

mating is forbidden. In the event that two X chromosomes are present within a female, in the
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previous generation they must have been in a mating pair, and the mean coalescence time, 𝔼[𝑇𝑓 ],

remains the same as for autosomes:

𝔼[𝑇𝑓 ] = 𝔼[𝑈 ] + 1. (1.15)

For two X chromosomes within a mating pair (state 3), the individuals are siblings with prob-

ability 𝑐0. Given that they are siblings, three possibilities exist for how two sampled alleles were

inherited. First, with probability 1
4 , the alleles coalesce in the mother in the previous generation.

Second, with probability 1
4 , they trace to the mother and do not coalesce, giving mean coalescence

time 𝔼[𝑇𝑓 ] +1. Third, with probability 1
2 , they derive separately from the mother and father, giving

mean coalescence time 𝔼[𝑈 ] + 1.

Suppose now that the individuals in the mating pair are not siblings, an event with probability

1 − 𝑐0. The X chromosome in the male is inherited from his mother, and the X chromosome in the

female has probability 1
2 of being inherited from her mother and probability 1

2 of being inherited

from her father. These events give coalescence times 𝔼[𝑉𝑓 𝑓 ] + 1 and 𝔼[𝑉𝑚𝑓 ] + 1, respectively.

Combining cases, we obtain

𝔼[𝑈 ] = 𝑐0

[
1
4
+ 1

4
(𝔼[𝑇𝑓 ] + 1) + 1

2
(𝔼[𝑈 ] + 1)

]
+ (1 − 𝑐0)

[
1
2
(𝔼[𝑉𝑚𝑓 ] + 1) + 1

2
(𝔼[𝑉𝑓 𝑓 ] + 1)

]
. (1.16)

Because X chromosomes are not inherited from father to son, states 4–6 no longer produce

identical recursions, as they did for autosomes. In all three states, the probability continues to be
1
𝑁

that two alleles in separate individuals in separate mating pairs are in siblings. For 𝑉𝑚𝑚 , given

that the two males are siblings, with probability 1
2 , the two alleles coalesce in one generation

(in their mother). With probability 1
2 , they derive from the mother and do not coalesce, giving

coalescence time 𝔼[𝑇𝑓 ] + 1. If the two males are not siblings, an event with probability 1− 1
𝑁

, then

the X chromosomes trace to non-sib mothers, and the expected coalescence time is 𝔼[𝑉𝑓 𝑓 ] + 1.
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Combining these terms, we have

𝔼[𝑉𝑚𝑚] =
1
𝑁

[
1
2
+ 1

2
(𝔼[𝑇𝑓 ] + 1)

]
+

(
1 − 1

𝑁

)
(𝔼[𝑉𝑓 𝑓 ] + 1) . (1.17)

For 𝑉𝑚𝑓 , if the male and female in separate mating pairs are siblings, then probabilities and

coalescence times follow from Eq. 1.16. If the male and female are not siblings, then with probabil-

ity 1
2 , the alleles have been inherited from a male and a female in separate mating pairs, and with

probability 1
2 , they have been inherited from two females in separate mating pairs. The coalescence

times follow similarly from Eq. 1.16. Combining terms, we get

𝔼[𝑉𝑚𝑓 ] =
1
𝑁

[
1
4
+ 1

4
(𝔼[𝑇𝑓 ] + 1) + 1

2
(𝔼[𝑈 ] + 1)

]
+
(
1 − 1

𝑁

) [
1
2
(𝔼[𝑉𝑚𝑓 ] + 1) + 1

2
(𝔼[𝑉𝑓 𝑓 ] + 1)

]
. (1.18)

For 𝑉𝑓 𝑓 , if the two females are siblings, then two sampled alleles coalesce in one generation

in the father with probability 1
4 and in the mother with probability 1

8 , giving total coalescence

probability 3
8 . With probability 1

8 , the alleles derive from the mother and do not coalesce, giving

coalescence time 𝔼[𝑇𝑓 ] + 1. With probability 1
2 , one allele derives from the mother and the other

derives from the father, giving coalescence time 𝔼[𝑈 ] + 1. If the alleles do not come from sib-

lings, then coalescence times and probabilities follow the pattern of autosomes, and the transition

probabilities and coalescence times follow the non-sibling portion of Eq. 1.2. Combining terms,

we have

𝔼[𝑉𝑓 𝑓 ] =
1
𝑁

[
3
8
+ 1

8
(𝔼[𝑇𝑓 ] + 1) + 1

2
(𝔼[𝑈 ] + 1)

]
+

(
1 − 1

𝑁

) [
1
4
(𝔼[𝑉𝑚𝑚] + 1) + 1

2
(𝔼[𝑉𝑚𝑓 ] + 1) + 1

4
(𝔼[𝑉𝑓 𝑓 ] + 1)

]
. (1.19)

Solving the system of five equations associated with the five states, Eqs. 1.15–1.19, we obtain

𝔼[𝑇𝑓 ] =
36𝑁 3 (1 − 𝑐0) + 56𝑁 2 (

1 − 1
28𝑐0

)
− 6𝑁 (1 − 𝑐0) − 6

12𝑁 2 (
1 − 1

4𝑐0
)
− 𝑁 (1 − 𝑐0) − 1

(1.20)

𝔼[𝑈 ] =
36𝑁 3 (1 − 𝑐0) + 44𝑁 2 (

1 + 1
44𝑐0

)
− 5𝑁 (1 − 𝑐0) − 5

12𝑁 2 (
1 − 1

4𝑐0
)
− 𝑁 (1 − 𝑐0) − 1

(1.21)
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𝔼[𝑉𝑚𝑚] =
36𝑁 3 (

1 − 3
4𝑐0

)
+ 23𝑁 2 (

1 + 9
23𝑐0

)
− 9𝑁

12𝑁 2 (
1 − 1

4𝑐0
)
− 𝑁 (1 − 𝑐0) − 1

(1.22)

𝔼[𝑉𝑚𝑓 ] =
36𝑁 3 (

1 − 3
4𝑐0

)
+ 35𝑁 2 (

1 − 3
35𝑐0

)
− 𝑁 (1 − 5𝑐0) − 5

12𝑁 2 (
1 − 1

4𝑐0
)
− 𝑁 (1 − 𝑐0) − 1

(1.23)

𝔼[𝑉𝑓 𝑓 ] =
36𝑁 3 (

1 − 3
4𝑐0

)
+ 29𝑁 2 (

1 + 3
29𝑐0

)
− 7𝑁

(
1 − 3

7𝑐0
)
− 3

12𝑁 2 (
1 − 1

4𝑐0
)
− 𝑁 (1 − 𝑐0) − 1

. (1.24)

In examining these equations, we immediately notice that the highest-order terms and coefficients

are the same for Eqs. 1.20 and 1.21 and for Eqs. 1.22–1.24. For large 𝑁 ,

𝔼[𝑇𝑓 ]
3𝑁

=
𝔼[𝑈 ]
3𝑁

≈ 1 − 𝑐0

1 − 1
4𝑐0

(1.25)

𝔼[𝑉𝑚𝑚]
3𝑁

=
𝔼[𝑉𝑚𝑓 ]

3𝑁
=
𝔼[𝑉𝑓 𝑓 ]

3𝑁
≈

1 − 3
4𝑐0

1 − 1
4𝑐0

. (1.26)

Eqs. 1.20 and 1.23 divided by 3𝑁 , the number of X chromosomes present each generation, are

plotted in Figure 1.3. As 𝑁 increases, 𝔼[𝑇𝑓 ]/(3𝑁 ) and 𝔼[𝑉𝑚𝑓 ]/(3𝑁 ) both quickly approach their

large-𝑁 limits. The limits, Eqs. 1.25 and 1.26, give reduction factors due to consanguinity. Note

that 𝔼[𝑉𝑚𝑓 ] − 𝔼[𝑇𝑓 ] ≈ 3𝑁𝑐0/(4 − 𝑐0), so for 𝑐0 > 0, 𝔼[𝑉𝑚𝑓 ]/(3𝑁 ) > 𝔼[𝑇𝑓 ]/(3𝑁 ) in the large-𝑁

limit. When we take the limit as 𝑁 → ∞ of 𝔼[𝑉𝑚𝑓 ]/(3𝑁 ), we observe that for 𝑐0 = 1, the limit is
1
3 , so that consanguinity can reduce the mean coalescence time to 1

3 of the value it attains without

consanguinity.

Although Eqs. 1.22–1.24 have the same large-𝑁 approximation, they differ slightly. It is straight-

forward to verify from the equations that if 𝑁 ≥ 2 and 0 ≤ 𝑐0 ≤ 1, then 𝔼[𝑉𝑚𝑚] < 𝔼[𝑉𝑓 𝑓 ] <

𝔼[𝑉𝑚𝑓 ]. The pairwise differences among the three equations appear in Figure 1.4, where we can

observe this result.

The sequence 𝔼[𝑉𝑚𝑚] < 𝔼[𝑉𝑓 𝑓 ] < 𝔼[𝑉𝑚𝑓 ] can be explained by coalescence probabilities in a

single generation. In each of states 4–6, when we sample parental mating pairs from the previous

generation, two individuals are siblings with probability 1
𝑁

. The coalescence probability in the

previous generation for two alleles sampled in these siblings is 1
2 for two males, 1

4 for a male and a

female, and 3
8 for two females. The lower single-generation probability of coalescence for state 5,

or 1
4 , contributes to 𝔼[𝑉𝑚𝑓 ] having the largest mean coalescence time among the three quantities.
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Figure 1.3: Normalized mean coalescence times on the X chromosome under a sib-mating model. Coales-
cence times are plotted as a function of the number of mating pairs (𝑁 ) and the proportion of mating pairs
that are sib mating pairs (𝑐0). (A) 𝔼[𝑇𝑓 ]/(3𝑁 ), Eq. 1.20. (B) 𝔼[𝑉𝑚𝑓 ]/(3𝑁 ), Eq. 1.23. The dashed line at 1

3
represents the minimal mean coalescence time under consanguinity, achieved at 𝑐0 = 1.

The higher single-generation coalescence probability of 1
2 for state 4 contributes to 𝔼[𝑉𝑚𝑚] having

the lowest coalescence time, and the intermediate 3
8 for state 6 places 𝔼[𝑉𝑓 𝑓 ] between the other

two values.

With the X-chromosomal mean coalescence times established for sib mating, we can compare

them to corresponding autosomal values. Both for autosomes and for the X chromosome, the

leading term in the mean coalescence time is a product of the number of alleles in the population,

4𝑁 or 3𝑁 , and a reduction factor due to consanguinity. For within-individual coalescence times

(Eqs. 1.7 and 1.25), the autosomes have reduction factor 1−𝑐0 and the X chromosome has reduction

factor (1 − 𝑐0)/(1 − 1
4𝑐0). For 0 < 𝑐0 < 1, 1 − 𝑐0 < (1 − 𝑐0)/(1 − 1

4𝑐0), and the autosomes have a

smaller reduction factor. The reduction factor due to consanguinity has a stronger effect on the

autosomal within-individual coalescence time than on the X-chromosomal value.

For the between-individual coalescence times for individuals in different mating pairs (Eqs. 1.8

and 1.26), the reduction factors are 1 − 3
4𝑐0 for autosomes and (1 − 3

4𝑐0)/(1 − 1
4𝑐0) for the X chro-

mosome, so that again, the effect of consanguinity is stronger on the autosomes than on the X

chromosome. Thus, both for pairs of alleles within individuals and for pairs of alleles in separate

mating pairs, under sib mating, consanguinity reduces expected time to coalescence by a greater

degree in the autosomal case compared to the X-chromosomal case.
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Figure 1.4: Differences between mean coalescence times of two X chromosomes sampled in separate indi-
viduals under sib mating. Differences are plotted as a function of the number of mating pairs (𝑁 ) and the
sib mating proportion (𝑐0). (A) 𝔼[𝑉𝑓 𝑓 ] −𝔼[𝑉𝑚𝑚]. (B) 𝔼[𝑉𝑚𝑓 ] −𝔼[𝑉𝑓 𝑓 ]. The panels visualize Eqs. 1.22–1.24.

1.3.2 First cousins

We move next to first-cousin mating. Whereas the four types of cousin mating have the same

effect on autosomal coalescence times, for the X chromosome, their effects differ. We consider all

four types of first-cousin mating, in addition to two double-first-cousin mating schemes: bilateral-

parallel cousins, where a male mates with a female who is both his father’s brother’s daughter and

his mother’s sister’s daughter, and bilateral-cross cousins, where a male mates with a female who

is both his father’s sister’s daughter and his mother’s brother’s daughter (Figure 1.5).

In each scheme, we continue to consider 𝑁 mating pairs, a fraction 𝑐1 of which are consan-

guineous pairs of a specified cousin mating type. We continue to disallow chance consanguinity,

and we permit only a single consanguinity regime at a time. As before, we exclude state 1, as two

X chromosomes cannot be in the same male.

The mean coalescence time for two alleles in state 2 is the same irrespective of the type of

consanguinity, and it follows from Eq. 1.15 for all of the cases. For states 4, 5, and 6, two individuals

in separate mating pairs are siblings with probability 1
𝑁

. Because chance first-cousin mating is not

allowed, equations associated with these states follow from our X-chromosomal sib-mating model

(Eqs. 1.17–1.19). Only for state 3 does the recursion differ across cases.
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Patrilateral-parallel

For patrilateral-parallel cousin mating, it never occurs that X-chromosomal alleles are shared iden-

tically by descent in the consanguineous pair, as the male in the pair does not receive an X chro-

mosome from his father (Figure 1.5A). Hence, the fact that their fathers are brothers does not

reduce coalescence times of X-chromosomal loci in a consanguineous pair compared with a non-

consanguineous pair, and we can disregard 𝑐1.

The X chromosome in the male of the mating pair has probability 1
2 of coming from a male two

generations back, and probability 1
2 of coming from a female two generations back. The X chro-

mosome in the female of the mating pair has probability 1
4 of coming from a male two generations

back and probability 3
4 of coming from a female two generations back. Combining these cases for

the positions of the alleles two generations back, with probability 1
8 , the alleles in two individuals

in a mating pair come from two males, producing coalescence time 𝔼[𝑉𝑚𝑚] + 2. They come from

a male and a female with probability 1
2 , producing coalescence time 𝔼[𝑉𝑚𝑓 ] + 2. They come from

A B C

D E F

Figure 1.5: X chromosomes in first-cousin mating schemes. (A) Patrilateral-parallel. (B) Patrilateral-cross.
(C) Matrilateral-parallel. (D) Matrilateral-cross. (E) Bilateral-parallel. (F) Bilateral-cross. X chromosomes
are depicted in red for the sib parents and their offspring in the unilateral mating regimes. The two sets of X
chromosomes in the two mating pairs are depicted in red and blue in the bilateral mating regimes, colored
identically to associated X chromosomes in the offspring.
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two females with probability 3
8 , producing coalescence time 𝔼[𝑉𝑓 𝑓 ] + 2. We have

𝔼[𝑈 ] = 1
8
(𝔼[𝑉𝑚𝑚] + 2) + 1

2
(𝔼[𝑉𝑚𝑓 ] + 2) + 3

8
(𝔼[𝑉𝑓 𝑓 ] + 2). (1.27)

When we solve the linear system of equations formed by Eqs. 1.15, 1.27, and 1.17–1.19, we

have

𝔼[𝑇𝑓 ] =
144𝑁 3 + 368𝑁 2 − 16𝑁 − 40

48𝑁 2 − 𝑁 − 5
(1.28)

𝔼[𝑈 ] = 144𝑁 3 + 320𝑁 2 − 15𝑁 − 35
48𝑁 2 − 𝑁 − 5

(1.29)

𝔼[𝑉𝑚𝑚] =
144𝑁 3 + 191𝑁 2 − 65𝑁

48𝑁 2 − 𝑁 − 5
(1.30)

𝔼[𝑉𝑚𝑓 ] =
144𝑁 3 + 239𝑁 2 + 15𝑁 − 35

48𝑁 2 − 𝑁 − 5
(1.31)

𝔼[𝑉𝑓 𝑓 ] =
144𝑁 3 + 215𝑁 2 − 33𝑁 − 20

48𝑁 2 − 𝑁 − 5
. (1.32)

As 𝑁 → ∞, these equations have limit 3𝑁 . The limiting mean coalescence time for each state de-

pends only on the number of mating pairs 𝑁 and not on the consanguinity rate 𝑐1. For patrilateral-

parallel first-cousin mating, consanguinity has no effect on the mean coalescence time of X-chromosomal

alleles.

Patrilateral-cross

Patrilateral-cross first-cousin mating (Figure 1.5B) is similar to patrilateral-parallel first-cousin

mating in that a pair of X-chromosomal alleles in the two individuals of a consanguineous pair

cannot both derive from the sibling parents. As a result, if we proceed through the possible cases

for where X chromosomes in a consanguineous pair could be located two generations in the past,

we obtain exactly the same cases that underlie Eq. 1.27; for state 3, the mean coalescence time

follows Eq. 1.27, and the consanguinity fraction 𝑐1 has no effect on this coalescence time.

The resulting system of equations is the same as for patrilateral-parallel first-cousin mating,

and therefore has the same solution. For each state, the mean𝑇𝑀𝑅𝐶𝐴 approaches 3𝑁 as 𝑁 → ∞. As
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was seen with our patrilateral-parallel solution, consanguinity has no effect on coalescence times

of X-chromosomal alleles under patrilateral-cross first-cousin mating.

Matrilateral-parallel

In matrilateral-parallel first-cousin mating, the male in a mating pair mates with his mother’s

sister’s daughter (Figure 1.5C). For two alleles sampled in state 3, the probability that the X chro-

mosome in the male of a consanguineous pair originates from the sib parent is 1, and the cor-

responding probability is 1
2 for the female. Hence, 𝑐1/2 is the probability that a mating pair is

consanguineous and both alleles chosen from the two individuals in the mating pair are from the

sib parents. Given that the alleles trace to the sib parents, they coalesce two generations back with

probability 3
8 . The event that the alleles come from a shared female ancestor two generations back

and do not coalesce has probability 1
8 and gives coalescence time 𝔼[𝑇𝑓 ] + 2. The event that the two

alleles come from separate individuals in a mating pair two generations back has probability 1
2 and

gives coalescence time 𝔼[𝑈 ] +2. The event the two alleles are sampled from a non-consanguineous

pair or that they are sampled from a consanguineous pair and do not trace to the sib parents has

probability 1 − 𝑐1/2. In this case, the alleles follow the same pattern as in Eq. 1.27. Combining the

cases, we have

𝔼[𝑈 ] = 𝑐1

2

[
3
8
× 2 + 1

8
(𝔼[𝑇𝑓 ] + 2) + 1

2
(𝔼[𝑈 ] + 2)

]
+

(
1 − 𝑐1

2

) [
1
8
(𝔼[𝑉𝑚𝑚] + 2) + 1

2
(𝔼[𝑉𝑚𝑓 ] + 2) + 3

8
(𝔼[𝑉𝑓 𝑓 ] + 2)

]
. (1.33)

Eqs. 1.15, 1.33, and 1.17–1.19 form a linear system, with solution

𝔼[𝑇𝑓 ] =
288𝑁 3 (

1 − 1
2𝑐1

)
+ 736𝑁 2 (

1 − 1
92𝑐1

)
− 32𝑁

(
1 − 1

2𝑐1
)
− 80

96𝑁 2 (
1 + 1

16𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 + 1

10𝑐1
) (1.34)

𝔼[𝑈 ] =
288𝑁 3 (

1 − 1
2𝑐1

)
+ 640𝑁 2 (

1 − 7
320𝑐1

)
− 30𝑁

(
1 − 1

2𝑐1
)
− 70

(
1 − 1

70𝑐1
)

96𝑁 2 (
1 + 1

16𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 + 1

10𝑐1
) (1.35)

𝔼[𝑉𝑚𝑚] =
288𝑁 3 (

1 − 5
16𝑐1

)
+ 382𝑁 2 (

1 + 25
382𝑐1

)
− 130𝑁

(
1 − 3

130𝑐1
)

96𝑁 2 (
1 + 1

16𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 + 1

10𝑐1
) (1.36)
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Figure 1.6: Normalized mean coalescence times on the X chromosome under matrilateral-parallel first-
cousin mating. Coalescence times are plotted as a function of the number of mating pairs (𝑁 ) and the pro-
portion of mating pairs that are matrilateral-parallel pairs (𝑐1). (A) 𝔼[𝑇𝑓 ]/(3𝑁 ), Eq. 1.34. (B) 𝔼[𝑉𝑚𝑓 ]/(3𝑁 ),
Eq. 1.37. The dashed lines represent the maximal reduction due to consanguinity, obtained by setting 𝑐1 = 1:
8
17 in (A) and 11

17 in (B).

𝔼[𝑉𝑚𝑓 ] =
288𝑁 3 (

1 − 5
16𝑐1

)
+ 478𝑁 2 (

1 − 23
478𝑐1

)
+ 30𝑁

(
1 + 13

30𝑐1
)
− 70

(
1 − 1

70𝑐1
)

96𝑁 2 (
1 + 1

16𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 + 1

10𝑐1
) (1.37)

𝔼[𝑉𝑓 𝑓 ] =
288𝑁 3 (

1 − 5
16𝑐1

)
+ 430𝑁 2 (

1 + 1
430𝑐1

)
− 66𝑁

(
1 − 7

66𝑐1
)
− 40

96𝑁 2 (
1 + 1

16𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 + 1

10𝑐1
) . (1.38)

The highest-order terms are the same for Eqs. 1.34 and 1.35 and for Eqs. 1.36–1.38. The 𝑁 → ∞

limits give

lim
𝑁→∞

𝔼[𝑇𝑓 ]
3𝑁

= lim
𝑁→∞

𝔼[𝑈 ]
3𝑁

=
1 − 1

2𝑐1

1 + 1
16𝑐1

(1.39)

lim
𝑁→∞

𝔼[𝑉𝑚𝑚]
3𝑁

= lim
𝑁→∞

𝔼[𝑉𝑚𝑓 ]
3𝑁

= lim
𝑁→∞

𝔼[𝑉𝑓 𝑓 ]
3𝑁

=
1 − 5

16𝑐1

1 + 1
16𝑐1

. (1.40)

Eqs. 1.34 and 1.37 normalized by 3𝑁 are plotted in Figure 1.6. As𝑁 increases, 𝔼[𝑇𝑓 ] and𝔼[𝑉𝑚𝑓 ]

both quickly approach their limits, a product of the number of X chromosomes in the population

and the reduction factor due to consanguinity. We have 𝔼[𝑉𝑚𝑓 ] − 𝔼[𝑇𝑓 ] ≈ 9𝑁𝑐1/(16 + 𝑐1), so if

0 < 𝑐1 ≤ 1, then 𝔼[𝑉𝑚𝑓 ] > 𝔼[𝑇𝑓 ] in the large-𝑁 limit. The lower bound on the limiting reduction

factor for 𝔼[𝑇𝑓 ]/(3𝑁 ) due to consanguinity, achieved when 𝑐1 = 1, is 8
17 . For 𝔼[𝑉𝑚𝑓 ]/(3𝑁 ), the

lower bound is 11
17 .
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Matrilateral-cross

Next, we consider matrilateral-cross first-cousin mating, in which a male mates with his mother’s

brother’s daughter (Figure 1.5D). We consider two alleles sampled in state 3. As seen in the

matrilateral-parallel case, the probability is 𝑐1/2 that a mating pair represents first cousins and

that we sample the sib parent alleles. In this case, because a male is the sib parent of the female

in the mating pair, the sampled alleles trace to the shared grandmother. These alleles have three

possible origins. First, the two sampled alleles coalesce in two generations with probability 1
4 . Sec-

ond, with probability 1
4 , the alleles derive from the shared grandmother but do not coalesce, giving

coalescence time 𝔼[𝑇𝑓 ] + 2. Third, with probability 1
2 , the two alleles come separately from the

male and female in the grandparental mating pair, giving coalescence time 𝔼[𝑈 ] + 2. As was seen

with matrilateral-parallel cousins, if the mating pair is not a first-cousin pair or we do not sample

chromosomes that trace to the sib parents, then the transition probabilities and coalescence times

follow from Eq. 1.27. Combining cases, we have

𝔼[𝑈 ] = 𝑐1

2

[
1
4
× 2 + 1

4
(𝔼[𝑇𝑓 ] + 2) + 1

2
(𝔼[𝑈 ] + 2)

]
+

(
1 − 1

2
𝑐1

) [
1
8
(𝔼[𝑉𝑚𝑚] + 2) + 1

2
(𝔼[𝑉𝑚𝑓 ] + 2) + 3

8
(𝔼[𝑉𝑓 𝑓 ] + 2)

]
. (1.41)

Eqs. 1.15, 1.41, and 1.17–1.19 form a linear system with solution

𝔼[𝑇𝑓 ] =
288𝑁 3 (

1 − 1
2𝑐1

)
+ 736𝑁 2 (

1 − 1
92𝑐1

)
− 32𝑁

(
1 − 1

2𝑐1
)
− 80

96𝑁 2 (
1 − 1

8𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 − 1

10𝑐1
) (1.42)

𝔼[𝑈 ] =
288𝑁 3 (

1 − 1
2𝑐1

)
+ 640𝑁 2 (

1 + 1
160𝑐1

)
− 30𝑁

(
1 − 1

2𝑐1
)
− 70

(
1 + 1

70𝑐1
)

96𝑁 2 (
1 − 1

8𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 − 1

10𝑐1
) (1.43)

𝔼[𝑉𝑚𝑚] =
288𝑁 3 (

1 − 3
8𝑐1

)
+ 382𝑁 2 (

1 + 33
382𝑐1

)
− 130𝑁

(
1 + 3

130𝑐1
)

96𝑁 2 (
1 − 1

8𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 − 1

10𝑐1
) (1.44)

𝔼[𝑉𝑚𝑓 ] =
288𝑁 3 (

1 − 3
8𝑐1

)
+ 478𝑁 2 (

1 − 15
478𝑐1

)
+ 30𝑁

(
1 + 17

30𝑐1
)
− 70

(
1 + 1

70𝑐1
)

96𝑁 2 (
1 − 1

8𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 − 1

10𝑐1
) (1.45)

𝔼[𝑉𝑓 𝑓 ] =
288𝑁 3 (

1 − 3
8𝑐1

)
+ 430𝑁 2 (

1 + 9
430𝑐1

)
− 66𝑁

(
1 − 3

22𝑐1
)
− 40

96𝑁 2 (
1 − 1

8𝑐1
)
− 2𝑁

(
1 − 1

2𝑐1
)
− 10

(
1 − 1

10𝑐1
) . (1.46)
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The highest-order terms agree for Eqs. 1.42,1.43 and 1.44–1.46. The 𝑁 → ∞ limits give

lim
𝑁→∞

𝔼[𝑇𝑓 ]
3𝑁

= lim
𝑁→∞

𝔼[𝑈 ]
3𝑁

=
1 − 1

2𝑐1

1 − 1
8𝑐1

(1.47)

lim
𝑁→∞

𝔼[𝑉𝑚𝑚]
3𝑁

= lim
𝑁→∞

𝔼[𝑉𝑚𝑓 ]
3𝑁

= lim
𝑁→∞

𝔼[𝑉𝑓 𝑓 ]
3𝑁

=
1 − 3

8𝑐1

1 − 1
8𝑐1

. (1.48)

Figure 1.7 plots Eqs. 1.42 and 1.45 divided by 3𝑁 . As𝑁 increases,𝔼[𝑇𝑓 ]/(3𝑁 ) and𝔼[𝑉𝑚𝑓 ]/(3𝑁 )

quickly approach their limits. 𝔼[𝑉𝑚𝑓 ] −𝔼[𝑇𝑓 ] ≈ 3𝑁𝑐1/(8 − 𝑐1), so for 0 < 𝑐1 ≤ 1, 𝔼[𝑉𝑚𝑓 ] > 𝔼[𝑇𝑓 ]

in the large-𝑁 limit. The lower bound on the large-𝑁 reduction factor for𝔼[𝑇𝑓 ]/(3𝑁 ) is 4
7 , achieved

at 𝑐1 = 1. For 𝔼[𝑉𝑚𝑓 ]/(3𝑁 ), the bound is 5
7 .

1.3.3 Double first cousins

Bilateral-parallel

In bilateral-parallel cousin mating, the male in a pair mates with a female who is his mother’s sis-

ter’s daughter and his father’s brother’s daughter (Figure 1.5E). The bilateral-parallel case contains

both matrilateral-parallel and patrilateral-parallel cousin mating. Hence, for two alleles sampled

in state 3, as in the matrilateral-parallel case, the event that the individuals are first cousins and the
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Figure 1.7: Normalized mean coalescence times on the X chromosome under matrilateral-cross first-cousin
mating. Coalescence times are plotted as a function of the number of mating pairs (𝑁 ) and the proportion
of mating pairs that are matrilateral-cross pairs (𝑐1): (A) 𝔼[𝑇𝑓 ]/(3𝑁 ), Eq. 1.42. (B) 𝔼[𝑉𝑚𝑓 ]/(3𝑁 ), Eq. 1.45.
The dashed lines represent the maximal reduction due to consanguinity, obtained by setting 𝑐1 = 1: 4

7 in (A)
and 5

7 in (B).
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Autosomal X-chromosomal

Siblings First
cousins

Double
first

cousins

Siblings First cousins
Patrilateral-
parallel,

Patrilateral-
cross

Matrilateral-
parallel,
Bilateral-
parallel

Matrilateral-
cross,

Bilateral-
cross

Kinship
coefficient

1
4

1
16

1
8

1
2 0 3

16
1
8

Tm,
Tf ,
U

1 − 𝑐0 1 − 1
4𝑐1 1 − 1

2𝑐1
1−𝑐0

1− 1
4𝑐0

1 1− 1
2𝑐1

1+ 1
16𝑐1

1− 1
2𝑐1

1− 1
8𝑐1

V𝒎𝒎 ,
V𝒎𝒇 ,
V𝒇 𝒇

1 − 3
4𝑐0 1 − 3

16𝑐1 1 − 3
8𝑐1

1− 3
4𝑐0

1− 1
4𝑐0

1 1− 5
16𝑐1

1+ 1
16𝑐1

1− 3
8𝑐1

1− 1
8𝑐1

Table 1.1: Large-𝑁 reduction factors of pairwise coalescence times due to various types of consanguinity.
These reduction factors give multipliers for the mean 𝑇𝑀𝑅𝐶𝐴 for a non-consanguineous population of 2𝑁
individuals: 4𝑁 for autosomes and 3𝑁 for X chromosomes. The kinship coefficient for a mating pair refers
to the probability that two alleles sampled from the two individuals of the pair are identical by descent.
Kinship coefficients are computed separately for autosomal loci and X-chromosomal loci. Note that 𝑇𝑚 is
used only in the autosomal case; for the X chromosome, two alleles cannot be in the same male.

two alleles are sampled from the sib parents has probability 𝑐1/2 to trace to the female sib parents

and probability 0 to trace to the male sib parents. The patrilateral-parallel line of descent does not

contribute to the possibility of identity by descent, so that the bilateral-parallel case behaves like

the matrilateral parallel case. The equation associated with state 3 follows from Eq. 1.33. All equa-

tions for the bilateral-parallel case mirror the matrilateral-parallel case, and the same conclusions

follow.

Bilateral-cross

In bilateral-cross cousin mating, the male in a pair mates with a female who is simultaneously

his father’s sister’s daughter and his mother’s brother’s daughter (Figure 1.5F). The matrilateral-

cross component of the bilateral-cross pedigree contributes to allele sharing in the mating pair,

but the patrilateral-cross line of descent does not contribute to allele sharing in the mating pair.

Coalescence times follow from the matrilateral-cross case.

1.3.4 Comparison of cousin-mating schemes

The six cousin mating regimes, four unilateral and two bilateral, produce three patterns in their

effects on X-chromosomal coalescence times. The patrilateral-parallel and patrilateral-cross cases
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are mathematically identical; for short, we refer to this pair simply as patrilateral. The matrilateral-

parallel and bilateral-parallel cases are identical, as are the matrilateral-cross and bilateral-cross

cases; we refer to these pairs as matrilateral-parallel and matrilateral-cross, respectively. Reduction

factors for the various cases are summarized in Table 1.1.

As noted in Sections 1.3.2 and 1.3.2, consanguinity has no effect on patrilateral cousin mating

because the male in the first-cousin mating pair never inherits an X chromosome from the sib

parent (his father). We can, however, compare reduction factors due to consanguinity for the

matrilateral-parallel and matrilateral-cross cases. For 𝔼[𝑇𝑓 ] and 𝔼[𝑈 ], the reduction factor for

matrilateral-parallel cousin mating is (1 − 1
2𝑐1)/(1 + 1

16𝑐1) (Eq. 1.39). The reduction factor for

matrilateral-cross cousin mating is (1 − 1
2𝑐1)/(1 − 1

8𝑐1) (Eq. 1.47).

To place the various X-chromosomal reduction factors in rank order, we observe that for 𝔼[𝑇𝑓 ]

and 𝔼[𝑈 ], (1 − 1
2𝑐1)/(1 + 1

16𝑐1) < (1 − 1
2𝑐1)/(1 − 1

8𝑐1) < 1 for 0 < 𝑐1 ≤ 1. The matrilateral-parallel

case has the strongest reduction factor, followed by the matrilateral-cross case, followed by the

patrilateral case, which has no reduction at all. For 𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ], we can see that

(1 − 5
16𝑐1)/(1 + 1

16𝑐1) < (1 − 3
8𝑐1)/(1 − 1

8𝑐1) < 1 for 0 < 𝑐1 ≤ 1. As is true for 𝔼[𝑇𝑓 ] and 𝔼[𝑈 ],

the matrilateral-parallel case has the strongest reduction factor, followed by the matrilateral-cross

case, followed by the patrilateral case (Figure 1.8).

Additionally, (1 − 1
2𝑐1)/(1 − 1

8𝑐1) < 1 − 1
4𝑐1 for 0 < 𝑐1 ≤ 1, so that the reduction in 𝔼[𝑇𝑓 ]

and 𝔼[𝑈 ] for the matrilateral-cross case is stronger than for the autosomal case. Similarly, (1 −
3
8𝑐1)/(1 − 1

8𝑐1) < 1 − 3
16𝑐1, so that the same is true for 𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ].

The reduction factors in Table 1.1 indicate that consanguinity has no effect on coalescence

times for X-chromosomal loci under patrilateral cousin mating, and in increasing order of strength,

the effect of consanguinity is greater on autosomal loci under first cousin mating, on X-chromosomal

loci under matrilateral-cross mating, and on X-chromosomal loci under matrilateral-parallel mat-

ing.

When we also consider the autosomal double-first-cousin case, we see that (1 − 1
2𝑐1)/(1 +

1
16𝑐1) < 1 − 1

2𝑐1 for 0 < 𝑐1 ≤ 1, so that the reduction in 𝔼[𝑇𝑓 ] and 𝔼[𝑈 ] for the X-chromosomal

matrilateral-parallel case is stronger than for the autosomal bilateral case. We also see that 1 −
1
2𝑐1 < (1 − 1

2𝑐1)/(1 − 1
8𝑐1) for 0 < 𝑐1 ≤ 1, so that the reduction in 𝔼[𝑇𝑓 ] and 𝔼[𝑈 ] is greater for
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Figure 1.8: Reduction factors for mean autosomal and X-chromosomal pairwise coalescence times under
various types of unilateral and bilateral first-cousin mating, plotted as a function of the consanguinity rate
(𝑐1). (A) Reduction factors for 𝔼[𝑇𝑚], 𝔼[𝑇𝑓 ], and 𝔼[𝑈 ] (𝔼[𝑇𝑚] for autosomes only). (B) Reduction factors
for 𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ]. See Table 1.1 for formulae.

the autosomal bilateral case than for the X-chromosomal matrilateral-cross case. For 𝔼[𝑇𝑓 ] and

𝔼[𝑈 ], the strengths of reduction in increasing order are matrilateral-cross, autosomal bilateral,

and matrilateral-parallel (Figure 1.8A).

We next examine the reduction factors for 𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ] for double-first-cousin

mating. We see that 1 − 3
8𝑐1 < (1 − 5

16𝑐1)/(1 + 1
16𝑐1) for 0 < 𝑐1 ≤ 1, so that the reduction in

𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ] for the autosomal double-first-cousin case is stronger than for the

X-chromosomal matrilateral-parallel case. For 𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ], the effect of con-

sanguinity in increasing order is matrilateral-cross, matrilateral-parallel, and autosomal bilateral

(Figure 1.8B). Whereas the unilateral cases have the same rank order for the strength of reduction

for within-individual states (𝔼[𝑇𝑓 ] and 𝔼[𝑈 ]) and between-individual states (𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and

𝔼[𝑉𝑓 𝑓 ]), these rank orders differ for the autosomal bilateral case.

1.4 Discussion

We have explored the effect of consanguinity on mean pairwise coalescence times on the X chro-

mosome. We extended the model of Severson et al. (2019) to the X chromosome, comparing X-

chromosomal and autosomal theoretical results. We found that patrilateral first-cousin mating
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has no effect on X-chromosomal coalescence; however, matrilateral first-cousin mating—and es-

pecially matrilateral-parallel mating—decreases X-chromosomal mean pairwise coalescence times

relative to autosomal coalescence times (Table 1.1).

In a coalescent model with first-cousin mating in a population of 𝑁 diploid mating pairs, we

have observed that in a large population, mean pairwise 𝑇𝑀𝑅𝐶𝐴 is the product of the mean coa-

lescence time in the absence of consanguinity, 4𝑁 for autosomes and 3𝑁 for X chromosomes, and

a reduction factor due to consanguinity (Table 1.1). Four types of unilateral first-cousin mating,

which are equivalent for autosomal loci, differ in their effects on the X chromosome (Eqs. 1.9–1.11,

1.39 and 1.40, 1.47 and 1.48).

In all four types of unilateral first-cousin mating, mean coalescence time for two alleles in the

same individual is reduced by consanguinity to a greater extent than mean coalescence time for

two alleles in two individuals in separate mating pairs (Table 1.1). This effect for the X chromo-

some accords with similar autosomal results (Severson et al., 2019). Because the X chromosome is

never inherited from father to son, patrilateral-parallel and patrilateral-cross consanguinity do not

affect X-chromosomal coalescence times. Matrilateral consanguinity, however, induces a stronger

reduction in X-chromosomal coalescence times compared to autosomal coalescence times.

For bilateral consanguinity, corresponding to double-first-cousin matings, coalescence times

follow the relationship of the mothers in the consanguineous pair: bilateral-parallel consanguinity

has the same coalescence time as matrilateral-parallel consanguinity, and bilateral-cross consan-

guinity has the same coalescence time as matrilateral-cross consanguinity. Interestingly, however,

whereas bilateral-parallel X-chromosomal coalescence times have a stronger reduction than that of

bilateral autosomal coalescence times when considering within-individual coalescence (𝔼[𝑇𝑚] and

𝔼[𝑇𝑓 ]), this order is reversed for between-individual coalescence (𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ]).

Genomic sharing around a site is inversely related to coalescence time at that site (Palamara

et al., 2012; Carmi et al., 2014; Browning and Browning, 2015); specifically, ROH lengths are in-

versely related to within-individual coalescence times, and IBD lengths are inversely related to

between-individual coalescence times. Thus, the model predicts that reduced coalescence times

on the X chromosome—owing to both smaller population size and to a stronger effect of ma-

trilateral consanguinity in reducing those times—give rise to longer ROH and IBD sharing on
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the X chromosome than on the autosomes. Further, the smaller mean within-individual coales-

cence times (𝔼[𝑇𝑚] and 𝔼[𝑇𝑓 ]) than between-individual coalescence times (𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and

𝔼[𝑉𝑓 𝑓 ]) predict greater ROH sharing within individuals than IBD sharing between individuals. The

smaller X-chromosomal population size compared to autosomal population size, together with

the greater reduction from matrilateral consanguinity of X-chromosomal within- and between-

individual𝑇𝑀𝑅𝐶𝐴 compared to autosomal within- and between-individual𝑇𝑀𝑅𝐶𝐴, predicts greater

ROH and IBD sharing on the X chromosome relative to autosomes.

Recent analyses have explored a variety of population-genetic features of the difference be-

tween the X chromosome and autosomes, tracing both to a difference in population size and also

to effects of differing inheritance patterns. Such studies have included analyses focused on compu-

tations of nucleotide diversity (Arbiza et al., 2014), coalescence times (Ramachandran et al., 2008),

and genomic sharing (Buffalo et al., 2016), and on various consequences of sex-biased demogra-

phy (Wilkins and Marlowe, 2006; Bustamante and Ramachandran, 2009; Goldberg and Rosenberg,

2015; Webster and Wilson Sayres, 2016). Our model adds to this work in its focus on effects of

specific consanguinity models.

We note that our models are limited in that we have studied the effect of different types of first-

cousin consanguinity separately, and we have not considered a population with a mixture of the

various types. In actual populations, while one of the four types of unilateral consanguinity might

be culturally preferred (Bittles, 2012), the appropriate model suited to a specific population might

involve a superposition of two or more types. The separation-of-time-scales coalescent approach

of Severson et al. (2021) successfully examined a superposition of consanguinity at different levels

of relatedness; we expect that this method will be useful for superimposing multiple forms of first-

cousin consanguinity. The separation-of-time-scales approach also has the benefit of producing

asymptotic coalescence time distributions extending beyond mean coalescence times.

A second limitation is that our model formulation considers only the most recent shared an-

cestral pair for a consanguineous pair; that ancestral pair could itself be consanguineous, so that

consanguineous pairs in the current generation might possess additional, more distant, shared an-

cestors. The approximation that this more distant consanguinity is ignored in computing mean
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coalescence times is likely to be more problematic in cases in which multiple shared lines of de-

scent are most probable, such as for small 𝑁 or for large 𝑐1 (Severson et al., 2021).

This year marks the centennial of the pioneering studies of Sewall Wright (1921) on the effects

of mating models on features of pointwise genotypic sharing—studies that have been central to

the large volume of subsequent work on genetic consequences of consanguinity, inbreeding, and

relatedness (Hill, 1996). In recent years, the study of consanguinity and its connections to runs

of homozygosity and identity by descent has been much advanced by new models and genomic

tools for data analysis (Bittles, 2012; Browning and Browning, 2012; Thompson, 2013; Romeo and

Bittles, 2014; Cussens and Sheehan, 2016; Ceballos et al., 2018). By exploring coalescent models

that incorporate each of the various types of first-cousin consanguinity, we have determined the

effects of first-cousin consanguinity in shaping X-chromosomal coalescence times, and by exten-

sion, genomic sharing. In addition to providing new coalescent theory for populations with con-

sanguinity, the study further enhances the understanding of the effects of sex-biased processes on

genomes, the factors that contribute to differences in genetic variation between X chromosomes

and autosomes, and the determinants of patterns of genomic sharing.

1.5 Appendix A: Autosomal first cousins

We consider the two-sex autosomal model with a fraction, 𝑐1, of first-cousin mating pairs. Each

generation, 𝑁 is the number of mating pairs. We forbid chance sib mating, chance first-cousin

mating, and double-first-cousin mating. As in the autosomal sib mating case, alleles within an

individual (states 1 and 2) must have come from a single mating pair one generation back. Hence

𝔼[𝑇𝑚] and 𝔼[𝑇𝑓 ] follow Eq. 1.1 from the sib mating case.

𝔼[𝑈 ] again represents the mean coalescence time for two alleles in two individuals in a mating

pair (state 3). Two individuals in a mating pair are first cousins with probability 𝑐1. Given that a

mating pair represents first cousins, the probability that the sampled alleles both come from the

sib parent is 1
4 . The sampled alleles then have four possible cases. First, the alleles coalesce two

generations back with probability 1
4 . They both derive from the shared grandfather with proba-

bility 1
8 , giving coalescence time 𝔼[𝑇𝑚] + 2. They both derive from the shared grandmother with
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probability 1
8 , giving coalescence time 𝔼[𝑇𝑓 ] + 2. With probability 1

2 , they derive separately from

the two grandparents, coalescing with time 𝔼[𝑈 ] + 2.

If the sampled alleles are either not from a first-cousin mating pair or not from the sib parents

of a first-cousin mating pair—an event with probability 1 − 1
4𝑐1— then the two alleles must be in

state 4, 5, or 6 two generations back, and the transition probabilities follow the non-sib mating

portion of Eq. 1.2. Combining cases, we have

𝔼[𝑈 ] = 𝑐1

4

[
1
4
× 2 + 1

8
(𝔼[𝑇𝑚] + 2) + 1

8
(𝔼[𝑇𝑓 ] + 2) + 1

2
(𝔼[𝑈 ] + 2)

]
+

(
1 − 1

4
𝑐1

) [
1
4
(𝔼[𝑉𝑚𝑚] + 2) + 1

2
(𝔼[𝑉𝑚𝑓 ] + 2) + 1

4
(𝔼[𝑉𝑓 𝑓 ] + 2)

]
. (1.49)

For two alleles in separate mating pairs, because parental mating pairs are chosen at random

from the previous generation, the probability that the two individuals are siblings by chance is 1
𝑁

.

Eq. 1.3 continues to apply. Solving the linear system containing Eq. 1.1, 1.49, and 1.3, we obtain

Eqs. 1.9–1.11. When sex is ignored, Eqs. 1.9–1.11 reduce to Eqs. 8-10 from Severson et al. (2019).

1.6 Appendix B: Autosomal double first cousins

We extend the first-cousin mating model of Appendix A to double first cousins. If two individuals

are double first cousins, then each parent of one individual is a sibling of a parent of the other

individual, and the individuals share two grandparental mating pairs (Figure 1.9). This scenario

can occur with children of two brother-sister pairs or with children of two brothers and two sisters.

For autosomes, the two categories are mathematically equivalent.

Each generation, the fraction of double-first-cousin mating pairs is a constant value 𝑐1. Chance

sibling mating, first-cousin mating, and double-first-cousin mating are forbidden among non-

consanguineous mating pairs. If two alleles are present within one individual, then they must

have been present in two individuals in a mating pair in the previous generation. 𝔼[𝑇𝑚] and

𝔼[𝑇𝑓 ] have the same recursions as before (Eq. 1.1).

For 𝔼[𝑈 ], if two alleles are in two individuals of a mating pair, then with probability 𝑐1, those

individuals are double first cousins. The probability that two alleles in the double first cousins are
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Figure 1.9: Double first cousins. If two individuals in a mating pair are double first cousins, then each parent
of the female is a sibling of one of the parents of the male, and the male and female share two grandparental
mating pairs.

inherited from one specific grandparental pair is 1
4 , and the probability that two alleles are inher-

ited from the same grandparental pair is 1
2 . If the two alleles are inherited from a grandparental

pair, then two generations ago they have four options. They coalesce with probability 1
4 , giving a

coalescence time of 2. With probability 1
8 , they are inherited from the grandfather with mean coa-

lescence time 𝔼[𝑇𝑚] + 2. With probability 1
8 , they are inherited from the grandmother with mean

coalescence time 𝔼[𝑇𝑓 ] + 2. Finally, with probability 1
2 they are two alleles in the two individuals

in a grandparental mating pair, giving mean coalescence time 𝔼[𝑈 ] + 2. If the individuals are not

double first cousins (and because chance sib mating, first-cousin mating, and double-first-cousin

mating are forbidden), then the two alleles have probability 1
4 of being in two males in separate

mating pairs two generations ago, probability 1
2 of being in a male and a female in separate mating

pairs two generations ago, and probability 1
4 of being in two females in separate mating pairs two

generations ago. These cases have mean coalescence times 𝔼[𝑉𝑚𝑚] +2, 𝔼[𝑉𝑚𝑓 ] +2, and 𝔼[𝑉𝑓 𝑓 ] +2,

respectively. Combining cases gives

𝔼[𝑈 ] = 𝑐1

2

[
1
4
× 2 + 1

8
(𝔼[𝑇𝑚] + 2) + 1

8
(𝔼[𝑇𝑓 ] + 2) + 1

2
(𝔼[𝑈 ] + 2)

]
+

(
1 − 1

2
𝑐1

) [
1
4
(𝔼[𝑉𝑚𝑚] + 2) + 1

2
(𝔼[𝑉𝑚𝑓 ] + 2) + 1

4
(𝔼[𝑉𝑓 𝑓 ] + 2)

]
. (1.50)
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Figure 1.10: Normalized mean coalescence times for autosomal double-first-cousin mating. Coalescence
times are plotted as a function of the number of mating pairs (𝑁 ) and the proportion of mating pairs that
are double-first-cousin pairs (𝑐1). (A) 𝔼[𝑇𝑓 ]/(4𝑁 ), Eq. 1.12. (B) 𝔼[𝑉𝑚𝑓 ]/(4𝑁 ), Eq. 1.14. The dashed lines
represent the maximal reduction due to consanguinity, obtained by setting 𝑐1 = 1: 1

2 in (A) and 5
8 in (B).

𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ] also have the same recursions as before; because parental mating

pairs are chosen uniformly at random with replacement from the 𝑁 possible pairs, if two alleles are

in two individuals in separate mating pairs, then the individuals share the same parental mating

pair with probability 1
𝑁

, giving rise to Eq. 1.3. Eqs. 1.1, 1.50, and 1.3 form a system of equations,

the solution to which is given in Eqs. 1.12–1.14.

Eqs. 1.12–1.14 have a similar form to the solutions for first cousin mating, the difference being

that 𝑐1/4 is replaced by 𝑐1/2 in Eqs. 1.12 and 1.13 and 3
16𝑐1 by 3

8𝑐1 in Eq. 1.14; the kinship coefficient

for double first cousins ( 1
8 ) is twice that of first cousins ( 1

16 ). Next, 𝔼[𝑉𝑚𝑓 ] − 𝔼[𝑇𝑚] = 𝑁𝑐1/2 − 3.

Hence, if 𝑐1 > 6
𝑁

(or the number of consanguineous mating pairs 𝑁𝑐1 exceeds 6), then the mean

coalescence time for two alleles in different mating pairs (𝔼[𝑉𝑚𝑚], 𝔼[𝑉𝑚𝑓 ], and 𝔼[𝑉𝑓 𝑓 ]) exceeds

the mean coalescence time for two alleles within an individual (𝔼[𝑇𝑚] and 𝔼[𝑇𝑓 ]). For 𝑐1 near 0,

the mean coalescence times are near 4𝑁 , and as 𝑐1 approaches 1, 𝔼[𝑇𝑚] ≈ 2𝑁 and 𝔼[𝑉𝑚𝑓 ] ≈ 5
2𝑁 .

Eqs. 1.12 and 1.14 normalized by 4𝑁 are plotted in Figure 1.10. The means are bounded below

by the maximal reduction due to consanguinity, 1
2 for 𝔼[𝑇𝑚] and 5

8 for 𝔼[𝑉𝑚𝑓 ]. As the number

of mating pairs, 𝑁 , increases, the mean coalescence times approach the product of 4𝑁 , the mean

coalescence time for a non-consanguineous diploid population of size 2𝑁 , and the reduction factor

due to consanguinity, 1 − 1
2𝑐1 for Eq. 1.12 and 1 − 3

8𝑐1 for Eq. 1.14.
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Abstract

By providing additional opportunities for coalescence within families, the presence of consan-

guineous unions in a population reduces coalescence times relative to non-consanguineous popu-

lations. First-cousin consanguinity can take one of six forms differing in the configuration of sexes

in the pedigree of the male and female cousins who join in a consanguineous union: patrilateral
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parallel, patrilateral cross, matrilateral parallel, matrilateral cross, bilateral parallel, and bilateral

cross. Considering populations with each of the six types of first-cousin consanguinity individu-

ally and a population with a mixture of the four unilateral types, we examine coalescent models of

consanguinity. We previously computed, for first-cousin consanguinity models, the mean coales-

cence time for X-chromosomal loci and the limiting distribution of coalescence times for autoso-

mal loci. Here, we use the separation-of-time-scales approach to obtain the limiting distribution

of coalescence times for X-chromosomal loci. This limiting distribution has an instantaneous coa-

lescence probability that depends on the probability that a union is consanguineous; lineages that

do not coalesce instantaneously coalesce according to an exponential distribution. We study the

effects on the coalescence time distribution of the type of first-cousin consanguinity, showing that

patrilateral-parallel and patrilateral-cross consanguinity have no effect on X-chromosomal coales-

cence time distributions and that matrilateral-parallel consanguinity decreases coalescence times

to a greater extent than does matrilateral-cross consanguinity.

2.1 Introduction

The phenomenon of consanguinity, in which unions occur between closely related individuals, is

a form of population structure that can dramatically affect properties of genetic variation (Crow

and Kimura, 1970; Jacquard, 1974). By increasing the probability that deleterious recessive vari-

ants appear in homozygous form compared to the corresponding probability in a population in

which it is absent, consanguinity contributes to the incidence of recessive disease (Bittles, 2001;

Woods et al., 2006); recent studies suggest that it contributes to incidence of complex disease as

well (Bittles and Black, 2010; Yengo et al., 2017; Ceballos et al., 2018; Johnson et al., 2018; Clark

et al., 2019). Consanguinity is common in human populations, with some populations promoting

consanguineous marriages as a cultural preference (Bittles, 2012; Romeo and Bittles, 2014; Sahoo

et al., 2021).

The offspring of a consanguineous union are expected to possess large portions of their genomes

shared between their two genomic copies, owing to the fact that an identical genomic segment can

be inherited along both their maternal and paternal lines. For the loci contained in such segments,
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the two copies coalesce at a common ancestor relatively few generations in the past. At other

locations, neither copy or only one copy traces to a recent shared ancestor, so that coalescence oc-

curs only much farther back in the past. Indeed, empirical genetic studies have identified multiple

populations in which individuals carry long homozygous segments that indicate recent coales-

cence of the two genomic copies and that are attributable in large part to consanguinity practices

(McQuillan et al., 2008; Pemberton et al., 2012; Ceballos et al., 2018)

In typical coalescent-based models that investigate coalescence times for sets of lineages, diploid

organisms are approximated by pairs of haploids independently drawn from a population (Hein

et al., 2005; Wakeley, 2009). This modeling choice is unsuited to the study of consanguineous fam-

ilies, in which the two lineages in an individual can be highly dependent. Hence, explicitly diploid

coalescent models have been devised for the study of coalescence in a setting of consanguinity.

The earliest studies focused on selfing in plants (Pollak, 1987; Nordborg and Donnelly, 1997; Nord-

borg and Krone, 2002), an extreme form of “consanguinity” in which both parents of a diploid

offspring are the same individual. Campbell (2015) extended diploid coalescent models to consider

a monogamous mating model with sibling mating, computing mean coalescence times under the

model. This approach was then extended by Severson et al. (2019) to consider mean coalescence

times in a diploid model with 𝑛th-cousin mating, for arbitrary values of 𝑛 and for superpositions

of multiple levels of 𝑛th-cousin mating.

In an extension of the work of Severson et al. (2019), Severson et al. (2021) advanced beyond

mean coalescence times to derive a full limiting distribution of coalescence times under superposi-

tion models of autosomal consanguinity, considering the limit as the population size grows large.

A limitation of the work of Severson et al. (2019) and Severson et al. (2021), however, is that it does

not distinguish between males and females in the mating model; all individuals are exchangeable.

Hence, it cannot accommodate the variety of scenarios in which differences between males and

females are salient. We have recently extended the method of Severson et al. (2019) to distinguish

between males and females, evaluating mean coalescence times in a two-sex model, to determine

the effect of consanguinity on X-chromosomal coalescence times specifically (Cotter et al., 2021).

Here, we use the advance from Severson et al. (2021) to compute the full distribution of coales-

cence times under a diploid, two-sex consanguinity model (Cotter et al., 2021). Seeking to derive
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distributions of X-chromosomal coalescence times, we consider each of the six types of first-cousin

consanguinity and a model that includes all four unilateral types in a single population. For each

model, we evaluate the distribution of coalescence times for two lineages sampled from the same

individual and for two lineages sampled from members of different mating pairs.

2.2 Methods

We adapt the models of Severson et al. (2019, 2021) and Cotter et al. (2021). We consider a constant-

sized population of 𝑁 diploid mating pairs. Individuals are sex-specific, the X chromosome is

considered, and specified forms of consanguinity are allowed. Using a Markov chain, we track

lineage pairs back in time until they coalesce.

To analyze the large-𝑁 limit of the model, we make use of the separation-of-time-scales ap-

proach introduced by Möhle (1998). This approach was used by Severson et al. (2021) to obtain the

limiting distribution of coalescence times under their autosomal diploid model of consanguinity.

In the approach from Möhle (1998), the limiting distribution of a Markov process with transition

matrix Π𝑁 is obtained by writing

Π𝑁 = A + 1
𝑁
B. (2.1)

Here, A describes “fast” transitions that have nontrivial probability in a single generation, and

B describes “slow” transitions that have very small probabilities in a single generation. As 𝑁 → ∞,

the fast transitions occur instantaneously, and the fast process can be described by an equilibrium

distribution

P = lim
𝑟→∞

A𝑟 . (2.2)

Rescaling 𝑡 in units of 𝑁 generations, as 𝑁 → ∞, Π𝑁 converges to a continuous-time process

Π(𝑡) = lim
𝑁→∞

(Π𝑁 )𝑁𝑡 = P𝑒𝑡G. (2.3)

The rate matrixG satisfiesG = PBP. Under Möhle’s theorem, the process converges to a continuous-

time process with an instantaneous jump at time 0 that corresponds to the “fast” transitions.
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As Severson et al. (2021) did with autosomal models, we apply the separation-of-time-scales

approach to our models of consanguinity on the X chromosome (Cotter et al., 2021). We begin with

the sib mating case and then consider each of the four types of unilateral first-cousin mating, the

two cases of bilateral first-cousin mating, and a mixture of all four unilateral types in one model.

2.3 Results

2.3.1 Sibling mating

We consider 𝑁 monogamous male–female mating pairs, a fraction 𝑐0 of which are sib mating pairs.

Pairs of X-chromosomal lineages can be in one of six states (Figure 2.1): two lineages have already

coalesced (state 0); two lineages are in a female (state 1); two lineages are in opposite individuals

of a mating pair (state 2); two lineages are in two individuals in different mating pairs, where the

two individuals are two males (state 3), a male and a female (state 4), or two females (state 5). Note

that for the X chromosome, there is no state for two lineages in a male, as males contain only

one X chromosome. We track the state of the process backward in time until it reaches the most

recent common ancestor for a pair of lineages (that is, until state 0 is reached). We denote by 𝑇𝑓 ,

𝑈 , 𝑉𝑚𝑚 , 𝑉𝑚𝑓 , and 𝑉𝑓 𝑓 the random coalescence time for pairs of lineages in states 1, 2, 3, 4, and 5,

respectively.

If two lineages are in state 0 (coalesced), they remain in state 0 with probability 1; this state

is absorbing. If two lineages are in a female (state 1), in the previous generation they must have

been in separate individuals in a mating pair (state 2) with probability 1. If two lineages are in

separate individuals in a mating pair (state 2), the pair is a sib mating pair with probability 𝑐0.

Given that the pair is a sib mating pair, the lineages transition to state 0 with probability 1
4 , state 1

with probability 1
4 , and state 2 with probability 1

2 . If the two lineages are not in a sib mating pair,

an event with probability 1 − 𝑐0, then they transition to states 4 and 5 with equal probability 1
2 .

For each of the states 3–5, because we pick parental mating pairs with replacement from the

previous generation, the probability is 1
𝑁

that the same mating pair is chosen. Thus, if two lineages

are in state 3, and the pair are siblings (an event with probability 1
𝑁

), then the lineages transition

to state 0 or state 1, each with probability 1
2 . If the two lineages in state 3 do not have the same
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Figure 2.1: Five states for two lineages. Males are squares; females are circles. State 1: within a female
(blue). State 2: in two individuals in a mating pair (green). State 3: in two males in different mating pairs
(yellow). State 4: in a male and a female in different mating pairs (orange). State 5: in two females in
different mating pairs (purple).

parental pair (probability 1 − 1
𝑁

), then they must transition to state 5 with probability 1. For state

4, if the two lineages are in siblings (probability 1
𝑁

), then they transition to state 0 with probability
1
4 , state 1 with probability 1

4 , and state 2 with probability 1
2 . If the lineages are not from siblings

(probability 1− 1
𝑁

), then they transition to state 4 or 5, each with probability 1
2 . Finally, two lineages

in state 5, conditional on being in siblings (probability 1
𝑁

), reach state 0 with probability 3
8 , state 1

with probability 1
8 , and state 2 with probability 1

2 . Conditional on not being in siblings (probability

1 − 1
𝑁

), the lineages transition to state 3 with probability 1
4 , state 4 with probability 1

2 , and state

5 with probability 1
4 . Combining these transition probabilities, we can write the transition matrix

as

Π𝑁 =

©­­­­­­­­­­­­­­«

0 1 2 3 4 5

0 1 0 0 0 0 0

1 0 0 1 0 0 0

2 𝑐0
4

𝑐0
4

𝑐0
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2
1−𝑐0

2

3 1
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. (2.4)

We can decompose Π𝑁 (Eq. 2.4) into its fast and slow transitions, as in Eq. 2.1:

A =

©­­­­­­­­«

1 0 0 0 0 0
0 0 1 0 0 0
𝑐0
4

𝑐0
4

𝑐0
2 0 1−𝑐0

2
1−𝑐0

2
0 0 0 0 0 1
0 0 0 0 1

2
1
2

0 0 0 1
4

1
2

1
4

ª®®®®®®®®¬
, B =

©­­­­­­­­«

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1
2

1
2 0 0 0 −1

1
4

1
4

1
2 0 − 1

2 − 1
2

3
8

1
8

1
2 − 1

4 − 1
2 − 1

4

ª®®®®®®®®¬
. (2.5)
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We first find the equilibrium distribution of the “fast” process, obtained by iterating transition

matrix A. This calculation appears in Appendix A, producing

P = lim
𝑟→∞

A𝑟 =

©­­­­­­­­­­­­­­«

1 0 0 0 0 0
𝑐0

4−3𝑐0
0 0 1

9

(
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)
4
9
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)
4
9
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4
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0 0 0 1
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0 0 0 1
9
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9
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9

ª®®®®®®®®®®®®®®¬
. (2.6)

We then compute G = PBP and solve for the limiting process Π(𝑡) using Eq. 2.3, obtaining

the matrix exponential, 𝑒𝑡G, as in Appendix B. Converting 𝑡 back into units of 𝑁 generations, this

gives

Π(𝑡) = P𝑒𝑡G =

©­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0

1 − 1−𝑐0
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(2.7)

The first column of the matrix Π(𝑡) represents the cumulative probability of coalescence in

time less than or equal to 𝑡 generations. States 1 and 2 have the same cumulative distribution,

representing the coalescence time for two lineages within a female (note that state 2, two lineages

in the two individuals in a mating pair, is always reached from state 1 after one step). States 3–5

have the same cumulative distribution, representing the coalescence time for two lineages in two
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distinct individuals. The cumulative distributions are

𝐹𝑇𝑓 (𝑡) = 𝐹𝑈 (𝑡) = 1 − 1 − 𝑐0

1 − 3
4𝑐0

𝑒
− 𝑡

3𝑁

(
1− 𝑐0

4
1− 3

4 𝑐0

)
, (2.8)

𝐹𝑉𝑚𝑚
(𝑡) = 𝐹𝑉𝑚𝑓

(𝑡) = 𝐹𝑉𝑓 𝑓
(𝑡) = 1 − 𝑒

− 𝑡
3𝑁

(
1− 𝑐0

4
1− 3

4 𝑐0

)
. (2.9)

Computing the expectations of these distributions, recalling that for 𝑋 > 0, 𝔼[𝑋 ] =
∫ ∞

0 [1 −

𝐹𝑋 (𝑥)] 𝑑𝑥 , we find

𝔼[𝑇𝑓 ] = 𝐸 [𝑈 ] = 3𝑁

(
1 − 𝑐0

1 − 1
4𝑐0

)
, (2.10)

𝔼[𝑉𝑚𝑚] = 𝔼[𝑉𝑚𝑓 ] = 𝔼[𝑉𝑓 𝑓 ] = 3𝑁

(
1 − 3

4𝑐0

1 − 1
4𝑐0

)
. (2.11)

where Eqs. 2.10 and 2.11 are the same as Eqs. 25 and 26 from Cotter et al. (2021), obtained by

first-step analysis.

Eqs. 2.8 and 2.9 are plotted in Figure 2.2. In the figure, we observe that the cumulative proba-

bility of coalescence increases with the consanguinity probability 𝑐0. For 𝑐0 = 0, 𝔼[𝑇𝑓 ] = 𝔼[𝑉𝑚𝑓 ] =

3𝑁 , the mean coalescence time for a haploid population with 3𝑁 chromosomes (the number of X

0.00

0.25

0.50

0.75

1.00

0N 4N 8N 12N 16N 20N
Time t (Generations)

P
(T

f
≤

t)

A

0.00

0.25

0.50

0.75

1.00

0N 4N 8N 12N 16N 20N
Time t (Generations)

P
(V

m
f
≤

t)

B

c0

0

0.25

0.5

0.75

1

Figure 2.2: Cumulative distributions of coalescence times as functions of the number of generations 𝑡

and the fraction of sib mating pairs 𝑐0. (A) Coalescence time within individuals, 𝑃 (𝑇𝑓 ≤ 𝑡), Eq. 2.8. (B)
Coalescence time between individuals, 𝑃 (𝑉𝑚𝑓 ≤ 𝑡), Eq. 2.9.
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chromosomes in our scenario). For 𝑐0 > 0, 𝔼[𝑇𝑓 ] < 𝔼[𝑉𝑚𝑓 ] due to the probability of consanguinity

whenever the two lineages are already in the same mating pair.

2.3.2 First cousins

We next consider first-cousin consanguinity on the X chromosome. We separately calculate the

limiting distributions of coalescence times for each of the four types of first-cousin consanguinity:

patrilateral parallel, a union of a male with his father’s brother’s daughter; patrilateral cross, a

union of a male with his father’s sister’s daughter; matrilateral parallel, a union of a male with his

mother’s sister’s daughter; and matrilateral cross, a union of a male with his mother’s brother’s

daughter.

For each of these four types of first-cousin consanguinity, two lineages have seven possible

states. State 0 is an absorbing state representing coalescence. State 1 is two lineages in a female.

States 3–5 represent, as in the sibling case, two lineages that are in two individuals in different

mating pairs, where the two individuals are two males (state 3), a male and a female (state 4), or

two females (state 5).

Next, for pairs of lineages from the two individuals in a mating pair, we follow the model of

a superposition of multiple mating levels from Severson et al. (2021), taking a special case of this

approach. Under the superposition model, each state 2𝑖 , 0 ≤ 𝑖 ≤ 𝑛, represents an ancestral state

for two lineages from a mating pair. These ancestral states can be viewed as “holding states” that

keep track of ancestral lineages of a mating pair in order to allow all possible 𝑖th-cousin levels

of consanguinity up to 𝑛th cousins. As we restrict attention to first-cousin mating, we need only

states 20 and 21 from Severson et al. (2021).

State 20 represents two lineages in the two individuals in a mating pair. State 21 represents

two lineages in two individuals ancestral to the two individuals in a mating pair. Because, unlike

Severson et al. (2021), we disallow sib mating, two lineages in state 20 cannot coalesce (state 0),

they cannot transition to the same individual (state 1), nor can they transition to two individuals

in a mating pair (state 20). Hence, lineages in 20 must transition to 21 (Figures 2.3 and 2.4).

In the absence of consanguinity, two lineages in state 21 can transition only to states 3, 4, and

5 (Figure 2.3). With first-cousin consanguinity present (Figure 2.4), two lineages in state 21 can
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21

20

3,4,5
Possible States

Figure 2.3: Example pedigree illustrating transitions from state 20 in the absence of consanguinity. Con-
sidering a pair of lineages in a mating pair, depicted in blue, the process always immediately transitions to
the holding state 21 one generation in the past. From state 21, the lineages transition to two separate mating
pairs, and hence, to states 3, 4, or 5.

0,1,20,3,4,5

21

20

Possible States

Figure 2.4: Example pedigree illustrating transitions from state 20 in the presence of first-cousin consan-
guinity. Considering a pair of lineages in a mating pair, depicted in blue, the process always immediately
transitions to the holding state 21. From state 21, the lineages can potentially transition to any of states 0,
1, 20, 3, 4, or 5, depending on the type of first-cousin consanguinity. Matrilateral-cross consanguinity is
depicted.

also coalesce (state 0) or transition to two lineages in the same female (state 1) or to two lineages

in opposite individuals in a mating pair (state 20).

The transition matrix depends on the type of first-cousin consanguinity permitted. However,

the type of consanguinity only affects transitions from state 21. For all types of consanguinity,

state 0 is an absorbing state. State 1, two lineages in the same female, always transitions to state 20

because the two lineages must come from opposite individuals of the same mating pair. Because

of the constraints we have placed on the process, state 20 always transitions to state 21. Finally,

the transition probabilities from states 3, 4, and 5 follow the same pattern as given in the transition

matrix in Eq. 2.4 (with state 20 in place of state 2).
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Below, we consider each of the four different types of first-cousin mating, two cases of bilateral

first-cousin mating, and a mixture of the four unilateral types. In each case, we define the transi-

tions that the process makes from state 21, and we obtain the limiting distributions of coalescence

times.

Patrilateral parallel

In patrilateral parallel first-cousin consanguinity, a union occurs between a male and his father’s

brother’s daughter. There is no way for the X-chromosomal lineages in the first-cousin mating

pair to have originated from the shared grandparental pair because X chromosomes are never

transmitted from fathers to sons. Hence, irrespective of the fraction 𝑐1 in the population, lineages

in state 21 can only transition to states 3, 4, and 5.

In state 21, one X chromosome in one of the parental pairs is always in a female (the parent of

the male in state 20). The probability is then 1
2 that this X chromosome is in a male one generation

ancestral to 21 and 1
2 that it is in a female. The other X chromosome in state 21, located in a

parent of the female in state 20, can be in a male or female, with equal probability. Hence, one

generation ancestral to 21, this X chromosome is in a female with probability 3
4 and in a male

with probability 1
4 . We can multiply probabilities for the two separate X chromosomes to obtain

transition probabilities from state 21. In particular, the two lineages will be in two separate males

one generation previously (state 3) with probability 1
8 . They will be in a male and a female (state 4)

with probability 1
2 . They will be in two separate females (state 5) with probability 3

8 . The transition

matrix is:

Π𝑁 =

©­­­­­­­­­­­­­­­­­«

0 1 20 21 3 4 5

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

20 0 0 0 1 0 0 0

21 0 0 0 0 1
8

1
2

3
8

3 1
2𝑁

1
2𝑁 0 0 0 0 1 − 1

𝑁

4 1
4𝑁

1
4𝑁

1
2𝑁 0 0 1− 1

𝑁

2
1− 1

𝑁

2

5 3
8𝑁

1
8𝑁

1
2𝑁 0 1− 1

𝑁

4
1− 1

𝑁

2
1− 1

𝑁

4

ª®®®®®®®®®®®®®®®®®¬

. (2.12)
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As with the sibling case, we can decompose the transitions into “fast” and “slow” transitions

(Eq. 2.1):

A =

©­­­­­­­­­­­«

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1

8
1
2

3
8

0 0 0 0 0 0 1
0 0 0 0 0 1

2
1
2

0 0 0 0 1
4

1
2

1
4

ª®®®®®®®®®®®¬
, B =

©­­­­­­­­­­­«

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 −1

1
4

1
4

1
2 0 0 − 1

2 − 1
2

3
8

1
8

1
2 0 − 1

4 − 1
2 − 1

4

ª®®®®®®®®®®®¬
. (2.13)

We next solve for the limiting distribution of the fast transition matrix A using the method of

Appendix A,

P = lim
𝑟→∞

A𝑟 =

©­­­­­­­­­­­«

1 0 0 0 0 0 0
0 0 0 0 1

9
4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

ª®®®®®®®®®®®¬
. (2.14)

Recalling G = PBP, we solve for the limit Π(𝑡) as in the sibling mating case, using Eq. 2.3,

calculating the matrix exponential, 𝑒𝑡G, as in Appendix B. We then convert 𝑡 back into units of

generations 𝑁 . This step gives

Π(𝑡) = P𝑒𝑡G =

©­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0

1 − 𝑒−
𝑡

3𝑁 0 0 0 1
9𝑒

− 𝑡
3𝑁 4

9𝑒
− 𝑡

3𝑁 4
9𝑒

− 𝑡
3𝑁

1 − 𝑒−
𝑡

3𝑁 0 0 0 1
9𝑒

− 𝑡
3𝑁 4

9𝑒
− 𝑡

3𝑁 4
9𝑒

− 𝑡
3𝑁

1 − 𝑒−
𝑡

3𝑁 0 0 0 1
9𝑒

− 𝑡
3𝑁 4

9𝑒
− 𝑡

3𝑁 4
9𝑒

− 𝑡
3𝑁

1 − 𝑒−
𝑡

3𝑁 0 0 0 1
9𝑒

− 𝑡
3𝑁 4

9𝑒
− 𝑡

3𝑁 4
9𝑒

− 𝑡
3𝑁

1 − 𝑒−
𝑡

3𝑁 0 0 0 1
9𝑒

− 𝑡
3𝑁 4

9𝑒
− 𝑡

3𝑁 4
9𝑒

− 𝑡
3𝑁

1 − 𝑒−
𝑡

3𝑁 0 0 0 1
9𝑒

− 𝑡
3𝑁 4

9𝑒
− 𝑡

3𝑁 4
9𝑒

− 𝑡
3𝑁

ª®®®®®®®®®®®®®®®®®¬

. (2.15)

Here, examining the first column of the matrix in Eq. 2.15—representing transitions to coalescence—

we can see that two lineages within an individual (state 1), within a mating pair (state 20), or in
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two separate mating pairs (states 3, 4, and 5) have equal coalescence times. In fact, as coales-

cence times are unaffected by patrilateral-parallel first-cousin consanguinity, they accord with the

coalescence time distribution for a population of size 3𝑁 haploid individuals. Using the same ran-

dom variables from the sibling case (where 𝑈 now represents 20), we can extract the cumulative

distribution functions of coalescence times from the first column of the matrix Π(𝑡):

𝐹𝑇𝑓 (𝑡) = 𝐹𝑈 (𝑡) = 1 − 𝑒−
𝑡

3𝑁 , (2.16)

𝐹𝑉𝑚𝑚
(𝑡) = 𝐹𝑉𝑚𝑓

(𝑡) = 𝐹𝑉𝑓 𝑓
(𝑡) = 1 − 𝑒−

𝑡
3𝑁 . (2.17)

For each of the five random random variables, the time to coalescence for two lineages is

distributed as an exponential random variable with rate 1/(3𝑁 ). The mean of these distributions—

the reciprocal of the coalescence rate—is 3𝑁 , matching the limiting means obtained by first-step

analysis in Eqs. 28–32 of Cotter et al. (2021).

Patrilateral cross

For the patrilateral-cross case, a union occurs between a male and his father’s sister’s daughter. As

with the parallel case, there is no way for the X-chromosomal lineages in the first-cousin mating

pair to have originated from a shared ancestor. We obtain the exact same transition probabilities

from state 21 and the same transition matrix (Eq. 2.12). The coalescence times for the patrilateral-

cross case are the same as in the parallel case.

Matrilateral parallel

In the matrilateral parallel case, a union occurs between a male and his mother’s sister’s daughter.

With probability 𝑐1/2, two lineages in state 21 trace back to the shared grandparental pair. The

lineages in state 21 coalesce with probability 3
8 (state 0), they are in the shared grandmother with

probability 1
8 (state 1), and they are in opposite individuals of the grandparental mating pair with

probability 1
2 (state 20).

With probability 𝑐1/2, two lineages in state 21 do not trace back to the shared grandparental

pair. Conditional on not tracing to this pair, they are in a male and a female (state 4) or two females
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(state 5), each with probability 1
2 . Finally, with probability 1−𝑐1, the two lineages are not ancestral

to a consanguineous mating pair; they then follow the same pattern as in the patrilateral-parallel

case. Combining cases gives the transition matrix,

Π𝑁 =

©­­­­­­­­­­­­­­­­­«

0 1 20 21 3 4 5

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

20 0 0 0 1 0 0 0

21
3𝑐1
16

𝑐1
16

𝑐1
4 0 1

8 − 𝑐1
8

1
2 − 𝑐1

4
3
8 − 𝑐1

8

3 1
2𝑁

1
2𝑁 0 0 0 0 1 − 1

𝑁

4 1
4𝑁

1
4𝑁

1
2𝑁 0 0 1− 1

𝑁

2
1− 1

𝑁

2

5 3
8𝑁

1
8𝑁

1
2𝑁 0 1− 1

𝑁

4
1− 1

𝑁

2
1− 1

𝑁

4
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As before, we decompose this matrix into “fast” and “slow” transitions (Eq. 2.1):

A =

©­­­­­­­­­­«

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

3𝑐1
16

𝑐1
16

𝑐1
4 0 1

8 − 𝑐1
8

1
2 − 𝑐1

4
3
8 − 𝑐1

8
0 0 0 0 0 0 1
0 0 0 0 0 1

2
1
2

0 0 0 0 1
4

1
2

1
4

ª®®®®®®®®®®¬
, B =

©­­­­­­­­­­«

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 −1

1
4

1
4

1
2 0 0 − 1

2 − 1
2

3
8

1
8

1
2 0 − 1

4 − 1
2 − 1

4

ª®®®®®®®®®®¬
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We next solve for the limiting distribution of the fast matrix A using the method of Appendix A:

P = lim
𝑟→∞

A𝑟 =

©­­­­­­­­­­­­­«

1 0 0 0 0 0 0
3𝑐1

16−5𝑐1
0 0 0 1

9

(
16−8𝑐1
16−5𝑐1

)
4
9

(
16−8𝑐1
16−5𝑐1

)
4
9

(
16−8𝑐1
16−5𝑐1

)
3𝑐1

16−5𝑐1
0 0 0 1

9

(
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16−5𝑐1

)
4
9

(
16−8𝑐1
16−5𝑐1

)
4
9

(
16−8𝑐1
16−5𝑐1

)
3𝑐1

16−5𝑐1
0 0 0 1

9

(
16−8𝑐1
16−5𝑐1

)
4
9

(
16−8𝑐1
16−5𝑐1

)
4
9

(
16−8𝑐1
16−5𝑐1

)
0 0 0 0 1

9
4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

ª®®®®®®®®®®®®®¬
. (2.20)
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Finally, recalling G = PBP, we solve for the matrix exponential 𝑒𝑡G using the method of Ap-

pendix B. We then solve for the continuous-time process Π(𝑡) via Eq. 2.3, converting 𝑡 back to

units of 𝑁 generations:

Π(𝑡) = P𝑒𝑡G =

©­­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0

1 − 1− 𝑐1
2

1− 5
16𝑐1

𝑒
− 𝑡

3𝑁

(
1+ 𝑐1

16
1− 5

16 𝑐1

)
0 0 0 1

9 · 1− 𝑐1
2
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16𝑐1

𝑒
− 𝑡
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16 𝑐1
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𝑒
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3𝑁
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16 𝑐1
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𝑒
− 𝑡
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1+ 𝑐1

16
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𝑒
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𝑒
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(2.21)

We are concerned with transitions from each of the various states to coalescence (state 0). The

first column of Π(𝑡) gives the limiting cumulative distribution functions for the time to the most

recent common ancestor for two lineages within an individual (state 1) and two lineages between

individuals (states 3, 4 and 5):

𝐹𝑇𝑓 (𝑡) = 𝐹𝑈 (𝑡) = 1 −
1 − 𝑐1

2

1 − 5
16𝑐1

𝑒
− 𝑡

3𝑁

(
1+ 𝑐1

16
1− 5

16 𝑐1

)
, (2.22)

𝐹𝑉𝑚𝑚
(𝑡) = 𝐹𝑉𝑚𝑓

(𝑡) = 𝐹𝑉𝑓 𝑓
(𝑡) = 1 − 𝑒

− 𝑡
3𝑁

(
1+ 𝑐1

16
1− 5

16 𝑐1

)
. (2.23)

To compute expectations, recalling that for 𝑋 > 0, 𝔼[𝑋 ] =
∫ ∞

0 [1 − 𝐹𝑋 (𝑥)] 𝑑𝑥 , we find

𝔼[𝑇𝑓 ] = 𝐸 [𝑈 ] = 3𝑁
(1 − 𝑐1

2
1 + 𝑐1

16

)
, (2.24)

𝔼[𝑉𝑚𝑚] = 𝔼[𝑉𝑚𝑓 ] = 𝔼[𝑉𝑓 𝑓 ] = 3𝑁

(
1 − 5

16𝑐1

1 + 𝑐1
16

)
. (2.25)
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Figure 2.5: Cumulative distributions of coalescence times as functions of the number of generations 𝑡 and
the fraction of matrilateral-parallel mating pairs 𝑐1. (A) Coalescence time within individuals, 𝑃 (𝑇𝑓 ≤ 𝑡),
Eq. 2.22. (B) Coalescence time between individuals, 𝑃 (𝑉𝑚𝑓 ≤ 𝑡), Eq. 2.23.

Eqs. 2.24 and 2.25 are the same as Eqs. 39 and 40 from Cotter et al. (2021). Eqs. 2.22 and 2.23 are

plotted in Figure 2.5.

Matrilateral cross

In the matrilateral-cross case, a union occurs between a male and his mother’s brother’s daughter.

This case is similar to the matrilateral-parallel case. With probability 𝑐1/2, two lineages in state

21 trace to the shared grandparental pair. They coalesce with probability 1
4 (state 0), they are in

the shared grandmother with probability 1
4 (state 1), and they are in opposite individuals of the

grandparental mating pair with probability 1
2 (state 20).

With probability 𝑐1/2, two lineages in state 21 do not trace to the shared grandparental pair.

Conditional on the lineages not both tracing to the shared grandparental pair, they are in two

males (state 3), a male and a female (state 4) or two females (state 5), with probabilities 1
4 , 1

2 , and
1
4 , respectively. Finally, with probability 1−𝑐1, two lineages are not ancestral to a consanguineous

mating pair.
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In this case, they follow the same pattern as enumerated for the patrilateral-parallel case. The

transition matrix is

Π𝑁 =

©­­­­­­­­­­­­­­­­­«

0 1 20 21 3 4 5

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

20 0 0 0 1 0 0 0
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We separate the “fast” and “slow” transitions as before (Eq. 2.1):

A =

©­­­­­­­­­­­«
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Using the method of Appendix A, we solve for the stationary distribution of the “fast” process:

P = lim
𝑟→∞

A𝑟 =

©­­­­­­­­­­­­­«
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(
8−4𝑐1
8−3𝑐1

)
𝑐1

8−3𝑐1
0 0 0 1

9

(
8−4𝑐1
8−3𝑐1

)
4
9

(
8−4𝑐1
8−3𝑐1

)
4
9

(
8−4𝑐1
8−3𝑐1

)
0 0 0 0 1

9
4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9
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As before, using G = PBP, we calculate the matrix exponential, 𝑒𝑡G, using the method of

Appendix B. We then obtain Π(𝑡) from Eq. 2.3, converting 𝑡 back to units of 𝑁 generations:
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Π(𝑡) = P𝑒𝑡G =

©­­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0

1 − 1− 𝑐1
2

1− 3
8𝑐1

𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
0 0 0 1

9 · 1− 𝑐1
2

1− 3
8𝑐1

𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9 · 1− 𝑐1

2
1− 3

8𝑐1
𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9 · 1− 𝑐1

2
1− 3

8𝑐1
𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)

1 − 1− 𝑐1
2

1− 3
8𝑐1

𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
0 0 0 1

9 · 1− 𝑐1
2

1− 3
8𝑐1

𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9 · 1− 𝑐1

2
1− 3

8𝑐1
𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9 · 1− 𝑐1

2
1− 3

8𝑐1
𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)

1 − 1− 𝑐1
2

1− 3
8𝑐1

𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
0 0 0 1

9 · 1− 𝑐1
2

1− 3
8𝑐1

𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9 · 1− 𝑐1

2
1− 3

8𝑐1
𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9 · 1− 𝑐1

2
1− 3

8𝑐1
𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)

1 − 𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
0 0 0 1

9𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9𝑒

− 𝑡
3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9𝑒

− 𝑡
3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)

1 − 𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
0 0 0 1

9𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9𝑒

− 𝑡
3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9𝑒

− 𝑡
3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)

1 − 𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
0 0 0 1

9𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9𝑒

− 𝑡
3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
4
9𝑒

− 𝑡
3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
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(2.29)

We extract the cumulative distribution functions from the first column of the matrix, finding

𝐹𝑇𝑓 (𝑡) = 𝐹𝑈 (𝑡) = 1 −
1 − 𝑐1

2

1 − 3
8𝑐1

𝑒
− 𝑡

3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
, (2.30)

𝐹𝑉𝑚𝑚
(𝑡) = 𝐹𝑉𝑚𝑓

(𝑡) = 𝐹𝑉𝑓 𝑓
(𝑡) = 1 − 𝑒

− 𝑡
3𝑁

(
1− 𝑐1

8
1− 3

8 𝑐1

)
. (2.31)

Solving for the expectations of these distributions, recalling that for 𝑋 > 0, 𝔼[𝑋 ] =
∫ ∞

0 [1 −

𝐹𝑋 (𝑥)] 𝑑𝑥 , we find

𝔼[𝑇𝑓 ] = 𝐸 [𝑈 ] = 3𝑁
(1 − 𝑐1

2
1 − 𝑐1

8

)
, , (2.32)

𝔼[𝑉𝑚𝑚] = 𝔼[𝑉𝑚𝑓 ] = 𝔼[𝑉𝑓 𝑓 ] = 3𝑁

(
1 − 3

8𝑐1

1 − 𝑐1
8

)
. (2.33)

Eqs. 2.32 and 2.33 are the same as Eqs. 47 and 48 from Cotter et al. (2021). Eqs. 2.30 and 2.31 are

plotted in Figure 2.6.
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Figure 2.6: Cumulative distributions of coalescence times as functions of the number of generations 𝑡

and the fraction of matrilateral-cross mating pairs 𝑐1. (A) Coalescence time within individuals, 𝑃 (𝑇𝑓 ≤ 𝑡),
Eq. 2.30. (B) Coalescence time between individuals, 𝑃 (𝑉𝑚𝑓 ≤ 𝑡), Eq. 2.31.

Bilateral parallel

Having considered the four possible types of first-cousin consanguinity, we can also consider the

two bilateral cases, in which a mating pair are cousins through both sets of grandparents. In

bilateral-parallel first-cousin consanguinity, a union occurs between a male and a female who is

both his mother’s sister’s daughter and his father’s brother’s daughter. We can consider this case

to be a combination of the matrilateral-parallel case and the patrilateral-parallel case. In state

21, when the two lineages are ancestral to a bilateral-parallel mating pair, the male’s lineage must

transition through his mother because he cannot inherit an X chromosome from his father. Because

there is no way for the lineages to transition through the patrilateral-parallel grandparental pair,

the transitions in state 21 follow from the transitions for a matrilateral-parallel pair only. In the

case of bilateral-parallel first-cousin consanguinity, the transition matrix thus has the form given

for matrilateral-parallel first-cousin consanguinity in Eq. 2.18. The bilateral-parallel case then also

shares the same cumulative distribution functions given in Eqs. 2.22 and 2.23.

Bilateral cross

Bilateral-cross first-cousin consanguinity occurs when a male shares a union with a female who is

both his father’s sister’s daughter and his mother’s brother’s daughter. This case can be considered
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to be a combination of matrilateral-cross and patrilateral-cross first-cousin consanguinity. The

ancestral lineages cannot travel through the patrilateral-cross pair, and the transitions follow those

for matrilateral-cross consanguinity. The transition matrix (Eq. 2.26) and cumulative distribution

functions (Eqs. 2.30 and 2.31) follow similarly.

Mixture of first-cousin mating types

We next examine a population that possesses a mixture of all four unilateral first-cousin mating

types. To determine the transition matrix, it suffices to determine the transition probabilities from

state 21.

Recall that two lineages in state 21 are in two individuals ancestral to a mating pair that might

or might not be consanguineous. With probability 𝑐𝑝𝑝 , this mating pair is a patrilateral-parallel

first-cousin pair, with probability 𝑐𝑝𝑐 it is a patrilateral-cross first-cousin pair, with probability

𝑐𝑚𝑝 it is a matrilateral-parallel first-cousin pair, and with probability 𝑐𝑚𝑐 it is a matrilateral-cross

first-cousin pair. If the mating pair is a first-cousin pair of a particular one of the four types, then

transitions out of state 21 will match those derived for the associated case.

We can view the transition probabilities out of state 21 as a weighted combination of the tran-

sitions that each of these first-cousin cases makes when considered on its own. For example, in the

case of coalescence (transition to state 0), two lineages in state 21 coalesce with probability 3
16 for a

matrilateral-parallel first-cousin pair (rate 𝑐𝑚𝑝 ) and 1
8 for a matrilateral-cross first-cousin pair (rate

𝑐𝑚𝑐 ). Because patrilateral-parallel and -cross consanguinity do not affect transitions from state 21,

corresponding rates 𝑐𝑝𝑝 and 𝑐𝑝𝑐 do not influence the transition probability to state 0. Combining

all four cases, the transition probability from state 21 to state 0 is 3
16𝑐𝑚𝑝 + 1

8𝑐𝑚𝑐 . For transitions

from state 21 to states 0, 1, and 20, the probabilities are obtained by summing corresponding terms

in the matrices for the various types of unilateral first-cousin mating (Eqs. 2.12, 2.18, and 2.26).

For the transitions from state 21 to states 3, 4, and 5 (two lineages between individuals), con-

sanguinity acts to reduce the probabilities. The probabilities in the case of patrilateral paral-

lel consanguinity (Eq. 2.12) represent a null effect of no consanguinity. The 𝑐𝑚𝑝 and 𝑐𝑚𝑐 terms

(Eqs. 2.18 and 2.26) reduce the probabilities of transitioning to states 3, 4, and 5 (while inflating the
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0, 1, and 20 transitions). For state 3, for example, the null transition probability is 1
8 . Matrilateral-

parallel consanguinity reduces this transition probability by 𝑐𝑚𝑝/8, giving a combined transition

probability of 1
8 − 𝑐𝑚𝑝/8; matrilateral-cross consanguinity has no effect on this transition.

We proceed similarly to combine the remaining probabilities from the four unilateral first-

cousin mating types to produce the transitions for state 21. The transition matrix is

Π𝑁 =

©­­­­­­­­­­­­­­­­«

0 1 20 21 3 4 5

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

20 0 0 0 1 0 0 0

21
3𝑐𝑚𝑝

16 + 𝑐𝑚𝑐

8
𝑐𝑚𝑝

16 + 𝑐𝑚𝑐

8
𝑐𝑚𝑝

4 + 𝑐𝑚𝑐

4 0 1
8 −

𝑐𝑚𝑝

8
1
2 −

𝑐𝑚𝑝

4 − 𝑐𝑚𝑐

4
3
8 −

𝑐𝑚𝑝

8 − 𝑐𝑚𝑐

4

3 1
2𝑁

1
2𝑁 0 0 0 0 1 − 1

𝑁

4 1
4𝑁

1
4𝑁

1
2𝑁 0 0 1− 1

𝑁

2
1− 1

𝑁

2

5 3
8𝑁

1
8𝑁

1
2𝑁 0 1− 1

𝑁

4
1− 1

𝑁

2
1− 1

𝑁

4

ª®®®®®®®®®®®®®®®®¬

.

(2.34)

Matrices A and B follow from Eq. 2.1 and take the same form as those given for the matrilat-

eral cases with state 21 in matrix A (Eqs. 2.19 and 2.27), now adopting the new combinations of

transition probabilities. We solve for the stationary distribution of the “fast” transitions using the

method of Appendix A:

P = lim
𝑟→∞

A𝑟 =

©­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0
3
16𝑐𝑚𝑝+ 𝑐𝑚𝑐

8
1− 5

16𝑐𝑚𝑝− 3
8𝑐𝑚𝑐

0 0 0 1
9

(
1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐

)
4
9

(
1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐

)
4
9

(
1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐

)
3
16𝑐𝑚𝑝+ 𝑐𝑚𝑐

8
1− 5

16𝑐𝑚𝑝− 3
8𝑐𝑚𝑐

0 0 0 1
9

(
1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐

)
4
9

(
1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐

)
4
9

(
1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐

)
3
16𝑐𝑚𝑝+ 𝑐𝑚𝑐

8
1− 5

16𝑐𝑚𝑝− 3
8𝑐𝑚𝑐

0 0 0 1
9

(
1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐

)
4
9

(
1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐

)
4
9

(
1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐

)
0 0 0 0 1

9
4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9
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Once again, using G = PBP, we obtain the matrix exponential, 𝑒𝑡G, using the method of

Appendix B. We then compute Π(𝑡) with Eq. 2.3, converting 𝑡 back into units of 𝑁 generations.

The resulting matrix is structured in such a way that we can write:

Π(𝑡) = P𝑒𝑡G =

©­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0

1 − 𝑅𝐸 0 0 0 1
9𝑅𝐸

4
9𝑅𝐸

4
9𝑅𝐸

1 − 𝑅𝐸 0 0 0 1
9𝑅𝐸

4
9𝑅𝐸

4
9𝑅𝐸

1 − 𝑅𝐸 0 0 0 1
9𝑅𝐸

4
9𝑅𝐸

4
9𝑅𝐸

1 − 𝐸 0 0 0 1
9𝐸

4
9𝐸

4
9𝐸

1 − 𝐸 0 0 0 1
9𝐸

4
9𝐸

4
9𝐸

1 − 𝐸 0 0 0 1
9𝐸

4
9𝐸

4
9𝐸
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, (2.36)

where

𝑅 =
1 − 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐

2

1 − 5
16𝑐𝑚𝑝 − 3

8𝑐𝑚𝑐

, 𝐸 = 𝑒
− 𝑡

3𝑁

(
1+

𝑐𝑚𝑝
16 − 𝑐𝑚𝑐

8
1− 5

16 𝑐𝑚𝑝 − 3
8 𝑐𝑚𝑐

)
.

In the matrix in Eq. 2.36, the first column represents transitions to coalescence. We extract

from this column the cumulative distribution functions for time to coalescence for two lineages

within an individual (state 1) and two lineages between individuals (states 3, 4, and 5):

𝐹𝑇𝑓 (𝑡) = 𝐹𝑈 (𝑡) = 1 −
1 − 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐

2

1 − 5
16𝑐𝑚𝑝 − 3

8𝑐𝑚𝑐

𝑒
− 𝑡

3𝑁

(
1+

𝑐𝑚𝑝
16 − 𝑐𝑚𝑐

8
1− 5

16 𝑐𝑚𝑝 − 3
8 𝑐𝑚𝑐

)
, (2.37)

𝐹𝑉𝑚𝑚
(𝑡) = 𝐹𝑉𝑚𝑓

(𝑡) = 𝐹𝑉𝑓 𝑓
(𝑡) = 1 − 𝑒

− 𝑡
3𝑁

(
1+

𝑐𝑚𝑝
16 − 𝑐𝑚𝑐

8
1− 5

16 𝑐𝑚𝑝 − 3
8 𝑐𝑚𝑐

)
. (2.38)

For the expectations of these distributions, recalling that for 𝑋 > 0, 𝔼[𝑋 ] =
∫ ∞

0 [1 − 𝐹𝑋 (𝑥)] 𝑑𝑥 ,

we have

𝔼[𝑇𝑓 ] = 𝐸 [𝑈 ] = 3𝑁

(
1 − 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐

2

1 + 𝑐𝑚𝑝

16 − 𝑐𝑚𝑐

8

)
, (2.39)

𝔼[𝑉𝑚𝑚] = 𝔼[𝑉𝑚𝑓 ] = 𝔼[𝑉𝑓 𝑓 ] = 3𝑁

(
1 − 5

16𝑐𝑚𝑝 − 3
8𝑐𝑚𝑐

1 + 𝑐𝑚𝑝

16 − 𝑐𝑚𝑐

8

)
. (2.40)
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2.3.3 Comparisons

Limiting distribution versus exact distribution

Under the mixture model, to see how well the limiting distribution of coalescence times approxi-

mates the exact distribution, we perform simulations. In particular, for fixed values of the number

of mating pairs 𝑁 and rates of matrilateral-parallel (𝑐𝑚𝑝 ) and matrilateral-cross (𝑐𝑚𝑐 ) first-cousin

mating, we simulate 10,000 realizations of the Markov chain in Eq. 2.34 to produce an empirical

cumulative distribution function (CDF) of coalescence times for lineage pairs within and between

individuals. This procedure amounts to simulating a distribution of the time to the most recent

common ancestor (the time it takes to hit state 0) starting in either state 1 (within an individual)

or state 4 (between individuals).

Figure 2.7 plots the simulated empirical CDFs alongside the limiting CDFs presented in Eqs. 2.37

and 2.38. Conducting these simulations for different values of the number of mating pairs 𝑁 , we

see that the limiting cumulative distribution functions tend to be slightly inflated compared to

those simulated from the Markov chain; the limiting CDF tends to reach a specified probability

before it is reached in the simulation. This effect is most visible for the smallest value of 𝑁 , 𝑁 = 10;

as 𝑁 increases, the limiting distribution functions (Eqs. 2.37 and 2.38) closely approximate the sim-

ulated, empirical distributions.

X chromosome versus autosomes

Each of the limiting distributions for coalescence times for lineages from separate mating pairs,

both for single types of first-cousin consanguinity and for a superposition of multiple types, pos-

sesses a particular structure: an exponential CDF whose rate is the product of the population size

and a reduction by a factor that accounts for consanguinity. We now examine these limiting CDFs

for the X chromosome in relation to corresponding CDFs for autosomes. The autosomal coales-

cence time distributions under first-cousin consanguinity are obtained in Appendix C as a special

case of the 𝑛th cousin mating model of Severson et al. (2019). Here, we calculate the ratio of

the expected time to coalescence for the X chromosome (Eqs. 2.39 and 2.40) and for autosomes
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Figure 2.7: Cumulative distribution functions (CDFs) of coalescence times in a model with a mixture of
types of consanguinity. The Markov chain is given in Eq. 2.34; we consider the case of 𝑐𝑚𝑝 = 0.2 and
𝑐𝑚𝑐 = 0.2 with each of three values for the number of mating pairs 𝑁 . Dashed lines represent the limiting
CDFs in Eqs. 2.37 and 2.38, and solid lines represent the simulated CDFs from 10,000 observations of the
first-cousin mixture model (as described by the Markov chain in Eq. 2.34).

(Eqs. 2.47 and 2.48) within and between individuals, respectively, as we vary rates of matrilateral

and patrilateral consanguinity (Figure 2.8).

We first consider the ratio of expected coalescence times on the X chromosome relative to the

autosomes for pairs of lineages within individuals (Eq. 2.39/Eq. 2.47) as a function of patrilateral

(𝑐𝑝𝑝 + 𝑐𝑝𝑐 ) and matrilateral-parallel (𝑐𝑚𝑝 ) consanguinity (Figure 2.8A). Because the expected coa-

lescence time for two lineages on the X chromosome is a function of 3𝑁 and the corresponding

autosomal mean depends on 4𝑁 , in the absence of consanguinity, the null value of the ratio is 3
4 .

The ratio achieves its minimum value of 8
17 , with a stronger effect of consanguinity in reducing

X-chromosomal coalescence times relative to autosomal coalescence times, when we set 𝑐𝑚𝑝 to

1. It achieves its maximum value of 1, increasing X-chromosomal coalescence times compared to

autosomal coalescence times, when instead we set 𝑐𝑝𝑝 + 𝑐𝑝𝑐 to 1 (Figure 2.8A).

For the X:A ratio of between-individual expected coalescence times (Eq. 2.40/Eq. 2.48) as a

function of patrilateral (𝑐𝑝𝑝 + 𝑐𝑝𝑐 ) and matrilateral-parallel (𝑐𝑚𝑝 ) consanguinity (Figure 2.8B), the

minimum and maximum values differ less than for the within-individual case. The minimum ex-

ceeds 8
17 , equaling 132

221 , and is again reached at 𝑐𝑚𝑝 = 1. The maximum is less than 1, equaling 12
13 ,
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and is reached at 𝑐𝑝𝑝 + 𝑐𝑝𝑐 = 1. The minimum and maximum are less extreme than in the within-

individual case, as consanguinity has less of an effect on reducing the expected coalescence times

in the between-individual case, both for the X chromosome and for the autosomes.
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Figure 2.8: Ratios of X-chromosomal and autosomal mean coalescence times. Each point represents a
ratio of coalescence times for a specified mixture of two types of consanguinity, depicted on the x and y
axes. (A) Within individuals, matrilateral parallel and patrilateral consanguinity (Eq. 2.39/Eq. 2.47). (B)
Between individuals, matrilateral parallel and patrilateral consanguinity (Eq. 2.40/Eq. 2.48). (C) Within
individuals, matrilateral cross and patrilateral consanguinity (Eq. 2.39/Eq. 2.47). (D) Between individuals,
matrilateral cross and patrilateral consanguinity (Eq. 2.40/Eq. 2.48). In each panel, the minimal ratio is
indicated (obtained by setting matrilateral consanguinity to 1 and patrilateral consanguinity to 0), as is the
maximum (obtained by setting matrilateral consanguinity to 0 and patrilateral consanguinity to 1). The
value 3

4 occurs with no consanguinity, located at the origin in each panel. Values greater than 3
4 appear in

blue, indicating combinations of parameter values that bring expected X chromosomal coalescence times
closer to expected autosomal coalescence times. Values that reduce X chromosomal coalescence times to a
greater extent than on autosomes, thereby shifting the ratio less than 3

4 , appear in red. Contour lines divide
[ 8

17 , 1] into equal-sized intervals.
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We next examine the X:A coalescence time ratio within individuals (Eq. 2.39/Eq. 2.47) as a

function of patrilateral (𝑐𝑝𝑝 + 𝑐𝑝𝑐 ) and matrilateral-cross (𝑐𝑚𝑐 ) consanguinity (Figure 2.8C). The

minimal ratio is slightly larger than in the matrilateral-parallel case, equaling 4
7 at 𝑐𝑚𝑐 = 1. The

maximum occurs at 1, the same value as the corresponding case with matrilateral-parallel in place

of matrilateral-cross consanguinity, when 𝑐𝑝𝑝 + 𝑐𝑝𝑐 = 1. The slightly reduced range of values (i.e.,

the greater minimum) traces to the fact that the effect of matrilateral-cross consanguinity on X-

chromosomal coalescence times is slightly weaker, producing a weaker reduction in coalescence

times, than that of matrilateral-parallel consanguinity.

Finally, we analyze the X:A coalescence time ratio between individuals (Eq. 2.40/Eq. 2.48) as

a function of patrilateral (𝑐𝑝𝑝 + 𝑐𝑝𝑐 ) and matrilateral-cross (𝑐𝑚𝑐 ) consanguinity (Figure 2.8D). The

minimum occurs at 𝑐𝑚𝑐 = 1, equaling 60
91 . As in the corresponding matrilateral-parallel case,

the maximum, achieved at 𝑐𝑝𝑝 + 𝑐𝑝𝑐 = 1, is 12
13 . As was seen within individuals, the range of

permissible values is reduced relative to the matrilateral-parallel case, owing again to the weaker

effect of matrilateral-cross consanguinity on X-chromosomal coalescence times.

2.4 Discussion

Extending our previous work on mean coalescence times on the X-chromosome in a consanguin-

ity model, we have derived large-𝑁 limiting distributions for within-individual and between-

individual X-chromosomal coalescence times under various types of first-cousin consanguinity.

For between-individual coalescence times, each limiting distribution is exponential with a rate

equal to the product of the number of X chromosomes and a reduction factor due to consanguin-

ity (Eqs. 2.17, 2.23, and 2.31). Limiting distributions of within-individual coalescence times each

have a point mass corresponding to instantaneous coalescence, and conditional on not coalescing

instantaneously, are exponential (Eqs. 2.16, 2.22, and 2.30). These patterns also hold for limiting

distributions of pairwise coalescence times for a model with a mixture of types of first-cousin con-

sanguinity (Eqs. 2.37 and 2.38); in simulations, the limiting distributions under this superposition

agree with exact distributions from the Markov chain (Eq. 2.34, Figure 2.7).
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Our limiting distribution results can inform comparisons of the X chromosome with auto-

somes. The four types of first-cousin consanguinity have identical effects on the autosomes but

vary in their effect on the X chromosome. Hence, a comparison of coalescence time distributions

for the X chromosome and autosomes can be informative about features of consanguinity. Our

results (Eqs. 2.37 and 2.38) directly show the effect of different rates and types of consanguinity

on the distribution of X-chromosomal coalescence times. For example, increasing matrilateral-

parallel and matrilateral-cross consanguinity decreases the ratio of X and autosomal mean co-

alescence times; increasing patrilateral-parallel and patrilateral-cross first-cousin consanguinity

increases this ratio (Figure 2.8).

The results can be viewed in the setting of the idea of coalescent effective size (Nordborg and

Krone, 2002; Sjödin et al., 2005). As in other instances of the use of the separation-of-time-scales

technique, the X-chromosomal consanguinity model behaves like a standard coalescent model,

but with an altered effective size. Indeed, the model combines two phenomena for which the

separation-of-time-scales approach has been separately used—consanguinity (Nordborg and Don-

nelly, 1997; Severson et al., 2021) and a distinction between autosomes and the X chromosome (Ra-

machandran et al., 2008). We have shown that even when combining multiple phenomena, the

separation-of-time-scales approach can distill complicated demographic features into a standard

coalescent with a rescaled coalescent effective size. Indeed, each of our consanguinity models both

for the autosomes and for the X chromosome has a coalescent effective size that is a function of

the number of chromosomes in the model (4𝑁 or 3𝑁 ) and the rate and type of consanguinity in

the population.

Consanguinity and other preferences for mate choice vary across human populations, often

depending on cultural norms for certain types of consanguinity over others (Bittles, 2012). Be-

cause we have found that the different types of first-cousin consanguinity generate an observable

effect on X chromosomal coalescence times, it is possible that features of coalescence times can

be compared across populations to assess signatures of the different types of consanguinity. Such

assessments can potentially capitalize on the inverse relationship between coalescence times and

genomic sharing (Palamara et al., 2012; Carmi et al., 2014; Browning and Browning, 2015) to use

genomic sharing patterns to uncover features of consanguinity (Arciero et al., 2021).
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We note that in our coalescent model, the consanguinity parameters are constant over a long-

term. In human populations, features of consanguinity might change relatively rapidly, so that

in data applications, it might not be appropriate to assume consanguinity parameters that persist

over a large number of generations. If the relative ordering of the different types of consanguinity

does not change, however, we expect that the model would continue to be informative.

In applications in which the model is sensible, a potential limitation is that exact rates of a

given type of consanguinity might not be possible to infer from X-chromosomal data. For example,

the effects of the matrilateral-cross first-cousin consanguinity parameter on the X-chromosomal

coalescence times distributions are relatively small (Figure 2.6), so that given the difficulty in pre-

cisely estimating the coalescence times from data, the parameter might not be identifiable. By

jointly considering X-chromosomal and autosomal data (Figure 2.8), however, more information

will be available to conduct parameter inference.

Another limitation of our approach is that in formulating our model, we have disregarded

higher-order consanguinity. While we have explicitly modeled first-cousin mating pairs, we have

ignored the possibility that a pair has more distant consanguinity that is not captured in the model.

It may be possible, however, to allow for such possibilities by incorporating into the 𝑛th cousin

framework of Severson et al. (2021) sex-specific varieties of consanguinity at different levels of

relationship.
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2.5 Appendix A: Calculating the stationary distribution of the fast

transition matrix

In this appendix, we solve for the stationary distribution of the “fast” transition matrix A in the

case of sib mating on the X chromosome. This approach is also applied in the main text to obtain

the stationary distribution of the fast transition matrix in other models.

First, we permute the states to rewrite matrix A in a canonical form. The matrix A in Eq. 2.5

has one absorbing state (state 0) and a closed communication class 𝐶1 = {3, 4, 5}. We rearrange

the matrix to take the form

D =

(
C 0
R Q

)
, (2.41)

listing the recurrent states before the transient states. Thus, square matrix C includes tran-

sitions between recurrent states (i.e., absorbing states and closed communication classes), and

square matrix Q includes transitions between transient states. Matrix R includes transitions from

the transient states to the recurrent states. For matrix A in Eq. 2.5, the recurrent states are state 0

(absorbing) and states 3, 4, and 5 (closed communication class 𝐶1). The transient states are states

1 and 2. Permuting the matrix A to order the states 0, 3, 4, 5, 1, 2, we write

A∗ =

©­­­­­­­­­­­«

1 0 0 0 0 0
0 0 0 1 0 0
0 0 1

2
1
2 0 0

0 1
4

1
2

1
4 0 0

0 0 0 0 0 1
𝑐0
4 0 1−𝑐0

2
1−𝑐0

2
𝑐0
4

𝑐0
2

ª®®®®®®®®®®®¬
.

We treat the closed communication class 𝐶1 as a single absorbing state because any transitions

made into 𝐶1 transition infinitely often among the states it contains. We rewrite the transition

matrix for the resulting Markov chain by collapsing the columns and rows corresponding to the
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states in𝐶1. A∗ becomes

A∗∗ =
©­­­«

1 0 0 0
0 1 0 0
0 0 0 1
𝑐0
4 1 − 𝑐0

𝑐0
4

𝑐0
2

ª®®®¬ .
Matrix A∗∗ now has the form in Eq. 2.41, with 2 × 2 submatrices and C as the identity matrix.

Given a matrix in canonical form (Eq. 2.41 where C is the identity), the stationary distribution is

given by

lim
𝑟→∞

Dr =

(
I 0

NR 0

)
,

where 𝑁 is the fundamental matrix N = (I−Q)−1 and I is the identity matrix (Kemeny and Snell,

1983, 3.3.7). The matrix NR defines for each pair consisting of a transient state and a recurrent

state, the probability that from the transient state, the process reaches the recurrent state. For

matrix A∗∗, we have

P∗∗ = lim
𝑟→∞

(A∗∗)𝑟 =
©­­­­«

1 0 0 0
0 1 0 0
𝑐0

4−3𝑐0

4−4𝑐0
4−3𝑐0

0 0
𝑐0

4−3𝑐0

4−4𝑐0
4−3𝑐0

0 0

ª®®®®¬
.

To recover the stationary distribution of A∗, we expand the absorbing state for the closed

communication class 𝐶1, replacing it with the stationary distribution for the irreducible 3 × 3

matrix associated with the class. We then weight the transient transition probabilities in NR by

this stationary distribution. In other words, NR now gives, for each pair consisting of a transient

and a recurrent state, the probability of the associated transition. Expanding the absorbing state

for the closed communication class𝐶1, we get

P∗ = lim
𝑟→∞

(A∗)𝑟 =

©­­­­­­­­­«

1 0 0 0 0 0
0 1

9
4
9

4
9 0 0

0 1
9

4
9

4
9 0 0

0 1
9

4
9

4
9 0 0

𝑐0
4−3𝑐0

1
9

(
4−4𝑐0
4−3𝑐0

)
4
9

(
4−4𝑐0
4−3𝑐0

)
4
9

(
4−4𝑐0
4−3𝑐0

)
0 0

𝑐0
4−3𝑐0

1
9

(
4−4𝑐0
4−3𝑐0

)
4
9

(
4−4𝑐0
4−3𝑐0

)
4
9

(
4−4𝑐0
4−3𝑐0

)
0 0

ª®®®®®®®®®¬
.

Finally, we permute P∗ to recover P (Eq. 2.6).
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2.6 Appendix B: The matrix exponential 𝑒𝑡G

In this appendix, we obtain the matrix exponential, 𝑒𝑡G, which is needed in calculating the large-

𝑁 limit, Π(𝑡) = P𝑒𝑡G. The computations in this appendix are specific to sib mating on the X

chromosome, but the same method can be applied to obtain the matrix exponential in the other

models.

We first obtain the generator matrix from Eqs. 2.5 and 2.6:

G = PBP =

©­­­­­­­­­«

0 0 0 0 0 0
(4−4𝑐0 ) (4−𝑐0 )

3(4−3𝑐0 )2 0 0 1
9 · (4−4𝑐0 ) (4−𝑐0 )

3(4−3𝑐0 )2
4
9 · (4−4𝑐0 ) (4−𝑐0 )

3(4−3𝑐0 )2
4
9 · (4−4𝑐0 ) (4−𝑐0 )

3(4−3𝑐0 )2

(4−4𝑐0 ) (4−𝑐0 )
3(4−3𝑐0 )2 0 0 1

9 · (4−4𝑐0 ) (4−𝑐0 )
3(4−3𝑐0 )2

4
9 · (4−4𝑐0 ) (4−𝑐0 )

3(4−3𝑐0 )2
4
9 · (4−4𝑐0 ) (4−𝑐0 )

3(4−3𝑐0 )2
4−𝑐0

3(4−3𝑐0 ) 0 0 1
9 · 4−𝑐0

3(4−3𝑐0 )
4
9 · 4−𝑐0

3(4−3𝑐0 )
4
9 · 4−𝑐0

3(4−3𝑐0 )
4−𝑐0

3(4−3𝑐0 ) 0 0 1
9 · 4−𝑐0

3(4−3𝑐0 )
4
9 · 4−𝑐0

3(4−3𝑐0 )
4
9 · 4−𝑐0

3(4−3𝑐0 )
4−𝑐0

3(4−3𝑐0 ) 0 0 1
9 · 4−𝑐0

3(4−3𝑐0 )
4
9 · 4−𝑐0

3(4−3𝑐0 )
4
9 · 4−𝑐0

3(4−3𝑐0 )

ª®®®®®®®®®¬
. (2.42)

The generator matrix, G, has nonzero entries in the columns for state 0 and states 3, 4, and 5.

It has the property

G2 = −G
[

4 − 𝑐0

3 (4 − 3𝑐0)

]
.

For the constant 𝑘 = −(4 − 𝑐0)/[3 (4 − 3𝑐0)], we can then recursively write

G𝑛 = 𝑘𝑛−1G, (2.43)

The matrix exponential, 𝑒𝑡G =
∑∞

𝑖=0 𝑡
𝑖G𝑖/𝑖!, then equals

𝑒𝑡G = I + 𝑘−1G
∞∑︁
𝑖=1

𝑡𝑖𝑘𝑖

𝑖!

= I − 𝑘−1
(
1 − 𝑒𝑘𝑡

)
G.

Converting 𝑡 into units of 𝑁 generations and multiplying by P (Eq. 2.6), we obtain P𝑒𝑡G as in

Eq. 2.7. For each model studied, for the associated generator matrix G, the corresponding quantity

𝑘 that satisfies Eq. 2.43 appears in Table 2.1.
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Table 2.1: Constants used in matrix exponentiation for consanguinity models.

Type of consanguineous mating Chromosome Section Quantity 𝑘 satisfying 𝐺𝑛 = 𝑘𝑛−1𝐺

for generator matrix 𝐺 (Eq. 2.43)

Sibling X 2.3.1 − 4−𝑐0
3(4−3𝑐0 )

Patrilateral-parallel first-cousin X 2.3.2 − 1
3

Patrilateral-cross first-cousin X 2.3.2 − 1
3

Matrilateral-parallel first-cousin X 2.3.2 − 16+𝑐1
3(16−5𝑐1 )

Matrilateral-cross first-cousin X 2.3.2 − 8−𝑐1
3(8−3𝑐1 )

Bilateral-parallel first-cousin X 2.3.2 − 16+𝑐1
3(16−5𝑐1 )

Bilateral-cross first-cousin X 2.3.2 − 8−𝑐1
3(8−3𝑐1 )

Superposition of first-cousin types X 2.3.2 − 16+𝑐𝑚𝑝−2𝑐𝑚𝑐

3(16−5𝑐𝑚𝑝−6𝑐𝑚𝑐 )

First-cousin Autosomes Appendix C − 4
16−3𝑐1

Note that 𝑐𝑚𝑝 and 𝑐𝑚𝑐 in Section 2.3.2 have the same meaning as 𝑐1 in Sections 2.3.2 and 2.3.2, respectively.

2.7 Appendix C: Limiting distribution of autosomal coalescence

times for first-cousin mating

Equation 46 of Severson et al. (2021) gives a limiting distribution of autosomal coalescence times

for a model with a superposition of levels of cousin mating, up to 𝑛th cousins. In order to recover

first-cousin mating on the autosomes to compare to our X-chromosomal results, we use the special

case of this 𝑛th cousin model, where the rate of sibling mating 𝑐0 is 0 and the rate of first-cousin

mating is 𝑐1, stopping at first cousins. This special case produces the following transition matrix,

where state 0 is still coalescence, state 1 is two lineages in an individual, state 20 is two lineages

in opposite individuals of a mating pair, state 21 is two lineages in two individuals one generation

ancestral to a mating pair, and state 3 is two lineages in two individuals in different mating pairs:

Π𝑁 =

©­­­­­«

0 1 20 21 3
0 1 0 0 0 0
1 0 0 1 0 0
20 0 0 0 1 0
21

𝑐1
16

𝑐1
16

𝑐1
8 0 1 − 𝑐1

4
3 1

4𝑁
1

4𝑁
1

2𝑁 0 1 − 1
𝑁

ª®®®®®¬
. (2.44)



Appendix C 65

Note here that there is no need to use a two-sex model, as for autosomes, states referring to two

males, a male and a female, and two females simply collapse into the combined state 3. No new

information is gained for the autosomes when separating these states. Using Eq. 2.1, we split the

transition matrix into fast and slow processes:

A =

©­­­­­­­­«

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
𝑐1
16

𝑐1
16

𝑐1
8 0 1 − 𝑐1

4

0 0 0 0 1

ª®®®®®®®®¬
, B =

©­­­­­­­­«

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1
4

1
4

1
2 0 −1

ª®®®®®®®®¬
.

We solve for the stationary distribution of the fast matrix using the method in Appendix A (sim-

pler here by a single absorbing state for two lineages between individuals rather than a closed

communication class):

P = lim
𝑟→∞

A𝑟 =

©­­­­­­­­­­«

1 0 0 0 0
𝑐1

16−3𝑐1
0 0 0 16−4𝑐1

16−3𝑐1
𝑐1

16−3𝑐1
0 0 0 16−4𝑐1

16−3𝑐1
𝑐1

16−3𝑐1
0 0 0 16−4𝑐1

16−3𝑐1

0 0 0 0 1

ª®®®®®®®®®®¬
.

Using G = PBP, we obtain the matrix exponential 𝑒𝑡G using the method of Appendix B. We then

compute Π(𝑡) via Eq. 2.3, converting 𝑡 back into units of 𝑁 generations:

Π(𝑡) = P𝑒𝑡G =

©­­­­­­­­­­­­­­­«

1 0 0 0 0

1 − 1− 𝑐1
4

1− 3
16𝑐1

𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)
0 0 0 1− 𝑐1

4
1− 3

16𝑐1
𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)

1 − 1− 𝑐1
4

1− 3
16𝑐1

𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)
0 0 0 1− 𝑐1

4
1− 3

16𝑐1
𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)

1 − 1− 𝑐1
4

1− 3
16𝑐1

𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)
0 0 0 1− 𝑐1

4
1− 3

16𝑐1
𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)

1 − 𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)
0 0 0 𝑒

− 𝑡
4𝑁

(
1

1− 3
16 𝑐1

)

ª®®®®®®®®®®®®®®®¬

.
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We extract from the first column of this matrix the cumulative distribution functions for two

lineages starting in state 1 (within an individual) and state 3 (between individuals):

𝐹𝑇 (𝑡) = 𝐹𝑈 (𝑡) = 1 −
1 − 𝑐1

4

1 − 3
16𝑐1

𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)
, (2.45)

𝐹𝑉 (𝑡) = 1 − 𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)
. (2.46)

Severson et al. (2021) showed that the limiting distribution for 𝑛th cousin mating is given by their

Eqs. 47 and 48:

𝐹𝑇 (𝑡) = 𝐹𝑈 (𝑡) = 1 − 1 − 4𝑐
1 − 3𝑐

𝑒−
𝑡

4𝑁 ( 1
1−3𝑐 ),

𝐹𝑉 (𝑡) = 1 − 𝑒−
𝑡

4𝑁 ( 1
1−3𝑐 ) .

In the special case where we only have first-cousin mating, we replace their 𝑐 term with 𝑐1/16 and

recover Eqs. 2.45 and 2.46, respectively.

For the expectations of these distributions, by 𝔼[𝑋 ] =
∫ ∞

0 [1 − 𝐹𝑋 (𝑥)] 𝑑𝑥 for 𝑋 > 0, we find

𝔼[𝑇 ] = 𝔼[𝑈 ] = 4𝑁
(
1 − 𝑐1

4

)
, (2.47)

𝔼[𝑉 ] = 4𝑁
(
1 − 3

16
𝑐1

)
. (2.48)

Eqs. 2.47 and 2.48, obtained from the limiting distribution, accord with the large-𝑁 limit of Eqs. 8 and 10

from Severson et al. (2019), in which they were calculated via first-step analysis.



Chapter 3

Modeling the effects of consanguinity

on autosomal and X-chromosomal

runs of homozygosity and

identity-by-descent sharing

The following chapters and figures are currently in preparation for publication: Daniel J. Cotter,

Alissa L. Severson, Hormazd N. Godrej, Jonathan T. L. Kang, Shai Carmi, Noah A. Rosenberg.

Abstract

Runs of homozygosity (ROH) and identity-by-descent (IBD) sharing can be studied in diploid coa-

lescent models by noting that ROH and IBD-sharing at a genomic site are predicted to be inversely

related to coalescence times—which in turn can be mathematically obtained in terms of parame-

ters describing consanguinity rates. Comparing autosomal and X-chromosomal coalescent models,

we consider ROH and IBD-sharing in relation to consanguinity that proceeds via multiple forms

of first-cousin mating. We predict that across populations with different levels of consanguin-

ity, (1) in a manner that is qualitatively parallel to the increase of autosomal IBD-sharing with

67
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autosomal ROH, X-chromosomal IBD-sharing increases with X-chromosomal ROH, owing to the

dependence of both quantities on consanguinity levels; (2) even in the absence of consanguin-

ity, X-chromosomal ROH and IBD-sharing levels exceed corresponding values for the autosomes,

owing to the smaller population size and lower coalescence time for the X chromosome than for

autosomes; (3) with matrilateral consanguinity, the relative increase in ROH and IBD-sharing on

the X chromosome compared to the autosomes is greater than in the absence of consanguinity.

Examining genome-wide SNPs in human populations for which consanguinity levels have been

estimated, we find that autosomal and X-chromosomal ROH and IBD-sharing levels generally ac-

cord with the predictions. We find that each 1% increase in autosomal ROH is associated with an

increase of 2.1% in X-chromosomal ROH, and each 1% increase in autosomal IBD-sharing is associ-

ated with an increase of 1.6% in X-chromosomal IBD-sharing. For each calculation, particularly for

ROH, the estimate is reasonably close to the increase of 2% predicted by the population-size differ-

ence between autosomes and X chromosomes. The results support the utility of coalescent models

for understanding patterns of genomic sharing and their dependence on sex-biased processes.

3.1 Introduction

Autosomes and the X chromosome carry different signatures of population-genetic processes, ow-

ing both to differences in their mode of transmission and to demographic differences between

males and females. Comparisons of autosomes and X chromosomes can therefore contribute to

understanding genomic consequences of the different modes of transmission and of sex-biased and

sex-specific processes, and many studies of autosomes and X chromosomes have considered em-

pirical aspects of their population genetics in seeking such understanding (Wilkins and Marlowe,

2006; Ramachandran et al., 2008; Bustamante and Ramachandran, 2009; Ellegren, 2009; Arbiza

et al., 2014; Goldberg and Rosenberg, 2015; Buffalo et al., 2016; Webster and Wilson Sayres, 2016).

One set of population-genetic signatures that has the potential to be informative about sex-

specific phenomena concerns features of genomic sharing: patterns in runs of homozygosity

(ROH) and identity-by-descent (IBD) sharing on autosomes and the X chromosome (Buffalo et al.,

2016; Cai et al., 2022). Recently, we have studied the distribution of the time to the most recent
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common ancestor (𝑇𝑀𝑅𝐶𝐴) for pairs of autosomal lineages and pairs of X-chromosomal lineages in

diploid coalescent models under different types of consanguinity, considering coalescence of lin-

eages within an individual and lineages in separate individuals (Severson et al., 2019, 2021; Cotter

et al., 2021, 2022). This analysis finds that consanguinity decreases𝑇𝑀𝑅𝐶𝐴 both for lineage pairs in

the same individual and for lineage pairs in individuals in different mating pairs. Further, because

genomic sharing at a locus increases with decreasing 𝑇𝑀𝑅𝐶𝐴, consanguinity increases genomic

sharing both within (ROH) and between individuals (IBD) (Severson et al., 2019). Considering

autosomal and X-chromosomal systems separately, relationships between consanguinity levels

and 𝑇𝑀𝑅𝐶𝐴 values produce predictions about relative values of autosomal and X-chromosomal

ROH and IBD—with consanguinity that proceeds via matrilateral first-cousin mating reducing X-

chromosomal coalescence times to a greater extent than patrilateral first-cousin mating (Cotter

et al., 2021, 2022).

Here, we study the connections between autosomal and X-chromosomal 𝑇𝑀𝑅𝐶𝐴 and features

of X-chromosomal and autosomal ROH and IBD. Adding consideration of recombination to our

diploid coalescent models, we examine predictions that compare X-chromosomal ROH to X-chrom-

osomal IBD-sharing, X-chromosomal ROH to autosomal ROH, and X-chromosomal IBD-sharing

to autosomal IBD-sharing. We consider human population-genetic data on ROH and IBD in a set

of populations with consanguinity rates documented from demographic studies, using the results

to understand effects of different forms of consanguinity on genomic sharing.

3.2 Theory

3.2.1 No consanguinity

Model

To derive expectations about features of genomic sharing on the autosomes and the X chromo-

some, we first consider a diploid, constant-sized population with 𝑁 male–female mating pairs.

We assume that recombination is constant across the autosomes and occurs at a per-Morgan rate

proportional to the number of generations, 2𝑔, separating two sampled alleles. To account for
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differences between the X-chromosome and the autosomes, we assume 4𝑁 autosomes for every

3𝑁 X chromosomes and a scaled X-chromosomal recombination rate 2
3 that of the autosomes—

because recombination occurs only in females and X-chromosomes are in females two thirds of

the time (Hedrick, 2007).

The calculations in this section derive from work on coalescent theory and its relationship

to genomic sharing (Palamara et al., 2012; Carmi et al., 2014; Browning and Browning, 2015). In

general, this type of theoretical computation combines the coalescence-time distribution and a

random variable that describes the length distribution of a segment given a specified time to the

most recent common ancestor. Below, we derive the ratio of the expectation of total sharing on

the X chromosome to the expectation of total sharing on the autosomes.

Expected X-chromosomal:autosomal total genomic sharing

In the absence of consanguinity, we derive a prediction for the ratio of the expected fraction of the

X chromosome that lies in IBD segments and the corresponding expected fraction of the autosomal

genome that lies in IBD segments. For a population with a demographic model whose parameter-

ization is abbreviated by a quantity 𝜃 and whose recombination process has parameterization 𝜌 ,

Palamara et al. (2012) specified the probability density function 𝑝 (ℓ | 𝜃, 𝜌) that a specific locus is

spanned by an IBD segment of a specific genetic length ℓ . For the closed interval 𝑅 = [𝑢, 𝑣], the

probability that a locus is spanned by an IBD segment with length in 𝑅 is

ℙ𝑅 (ℓ | 𝜃, 𝜌) =
∫ 𝑣

𝑢

𝑝 (ℓ | 𝜃, 𝜌) 𝑑ℓ.

Palamara et al. (2012) separated 𝑝 (ℓ | 𝜃, 𝜌) into two terms by marginalizing over the number of

generations to the most recent common ancestor, measured in discrete time as a random variable

𝑔𝑚𝑟𝑐𝑎 . Following their eqs. 1 and 2,

𝑝 (ℓ | 𝜃, 𝜌) =
∞∑︁
𝑔=1

𝑝 (𝑔𝑚𝑟𝑐𝑎 = 𝑔 | 𝜃 ) 𝑝 (ℓ | 𝑔𝑚𝑟𝑐𝑎 = 𝑔, 𝜌). (3.1)
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The term 𝑝 (𝑔𝑚𝑟𝑐𝑎 = 𝑔 | 𝜃 ) is the coalescence-time distribution, which for a constant-sized pop-

ulation (parameterizing 𝜃 with a population size of 𝑁𝑒 lineages) is a geometric random variable

with rate 1/𝑁𝑒 . The term 𝑝 (ℓ | 𝑔𝑚𝑟𝑐𝑎 = 𝑔, 𝜌) is the probability density of the length of a segment

around a randomly chosen locus with coalescence time 𝑔𝑚𝑟𝑐𝑎 = 𝑔.

Treating the distance from the locus to a recombination event as exponentially distributed,

so that the total length of a shared segment between two lineages is the sum of two exponential

random variables—the distance to the next recombination on the left plus the distance to the next

recombination on the right—and measuring 𝑅 = [𝑢, 𝑣] in centimorgans, they obtained in their

equation 4:

ℙ𝑅

(
ℓ

����𝜃 = 𝑁𝑒 , 𝜌 =
𝑡

50

)
=

∫ ∞

0

[
𝑒
− 𝑡

𝑁𝑒

𝑁𝑒

∫ 𝑣

𝑢

𝐸𝑟𝑙2

(
ℓ ;

𝑡

50

)
𝑑ℓ

]
𝑑𝑡 . (3.2)

The first term is 𝑝 (𝑡𝑚𝑟𝑐𝑎 = 𝑡 | 𝜃 ) (note the switch to continuous time, substituting the discrete,

geometric 𝑔𝑚𝑟𝑐𝑎 by the continuous, exponential 𝑡𝑚𝑟𝑐𝑎 still measured in units of generations). The

second, 𝑝 (ℓ | 𝑔𝑚𝑟𝑐𝑎 = 𝑔, 𝜌), is an Erlang density (𝑡/50)2ℓ𝑒−ℓ𝑡/50 (Johnson et al., 1994, pg. 552)

with shape parameter 2 and rate parameter 𝜌 = 𝑡
50 centimorgans. With 𝑅 = [𝑢,∞), representing

segments of size 𝑢 centimorgans or greater, the inner integral gives (Palamara et al., 2012)

ℙ𝑅

(
ℓ

����𝜃 = 𝑁𝑒 , 𝜌 =
𝑡

50

)
=

∫ ∞

0

[
𝑒
− 𝑡

𝑁𝑒

𝑁𝑒

(
1 + 𝑢𝑡

50

)
𝑒−𝑢𝑡/50

]
𝑑𝑡 .

For the autosomes, we set 𝑁𝑒 = 4𝑁 for a population size of 4𝑁 autosomal lineages:

ℙ𝐴
𝑅

(
ℓ

����𝜃 = 4𝑁, 𝜌 =
𝑡

50

)
=

∫ ∞

0

[
𝑒−

𝑡
4𝑁

4𝑁

(
1 + 𝑢𝑡

50

)
𝑒−

𝑢𝑡
50

]
𝑑𝑡 =

25(25 + 4𝑁𝑢)
(25 + 2𝑁𝑢)2 . (3.3)

Similarly, for the X chromosome, we set 𝑁𝑒 = 3𝑁 for the reduced number of X-chromosomal

lineages. We rescale the 𝜌 = 𝑡
50 centimorgans from eq. 3.2 by 2

3 , giving 𝜌 = 𝑡
75 , to account for the

reduced recombination rate:

ℙ𝑋
𝑅

(
ℓ

����𝜃 = 3𝑁, 𝜌 =
𝑡

75

)
=

∫ ∞

0

[
𝑒−

𝑡
3𝑁

3𝑁

(
1 + 𝑢𝑡

75

)
𝑒−

𝑢𝑡
75

]
𝑑𝑡 =

25(25 + 2𝑁𝑢)
(25 + 𝑁𝑢)2 . (3.4)
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The expected fraction 𝑓 of the genome that lies in IBD segments in length interval 𝑅 is 𝔼𝑅 [𝑓 |

𝜃, 𝜌] = ℙ𝑅 (ℓ | 𝜃, 𝜌) (Palamara et al., 2012, equation 9). Using eqs. 3.3 and 3.4, we can express

the ratio of the expected fraction of the X chromosome that lies in IBD segments with length in

𝑅 = [𝑢,∞) and the expected fraction of the autosomes that lies in IBD segments with length in

𝑅 = [𝑢,∞):

𝔼𝑋
𝑅
[𝑓 | 𝜃 = 3𝑁, 𝜌 = 𝑡

75 ]
𝔼𝐴
𝑅
[𝑓 | 𝜃 = 4𝑁, 𝜌 = 𝑡

50 ]
=
ℙ𝑋
𝑅
(ℓ | 𝜃 = 3𝑁, 𝜌 = 𝑡

75 )
ℙ𝐴
𝑅
(ℓ | 𝜃 = 4𝑁, 𝜌 = 𝑡

50 )
=

(25 + 2𝑁𝑢)3

(25 + 𝑁𝑢)2(25 + 4𝑁𝑢) .

Taking 𝑁 → ∞, we obtain

lim
𝑁→∞

𝔼𝑋
𝑅
[𝑓 | 𝜃 = 3𝑁, 𝜌 = 𝑡

75 ]
𝔼𝐴
𝑅
[𝑓 | 𝜃 = 4𝑁, 𝜌 = 𝑡

50 ]
= 2. (3.5)

Because this limit does not depend on the lower limit of interval 𝑅, the population-size difference

for X chromosomes and autosomes gives rise to a prediction that, irrespective of the interval 𝑅,

for large 𝑁 , the fraction of the X chromosome that lies in IBD segments with lengths in 𝑅 is twice

the corresponding fraction for autosomes.

A similar argument holds for ROH. A pair of lineages in a single individual is inherited from

two lineages in two separate individuals in the previous generation. In an infinite population with-

out consanguinity, the two lineages in the parental generation represent two independent draws

from the population. Hence, the genomic sharing of the parental lineages follows the behavior we

have described for IBD-sharing. To produce two lineages in the offspring, one additional gener-

ation of recombination occurs; however, the probability that a recombination event changes the

IBD status of two lineages in one generation is small, so that ROH behavior in the offspring closely

follows the IBD behavior of the parents. We can conclude that, as we found for IBD segments, the

fraction of the X chromosome that lies in ROH segments with lengths in 𝑅 is equal to twice the

corresponding fraction for autosomes.
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3.2.2 Consanguinity

Model

We have previously studied the effects of first-cousin consanguinity on coalescence times (Cotter

et al., 2021, 2022). Under a coalescent model, extending work of Campbell (2015) and Severson et al.

(2019, 2021), we considered a population of 𝑁 diploid mating pairs, labeling individuals by sex. In

each generation, a fraction 𝑐1 of the mating pairs are consanguineous, with a specific mixture

of different types of first-cousin consanguinity (𝑐𝑝𝑝 for patrilateral-parallel, 𝑐𝑝𝑐 for patrilateral-

cross, 𝑐𝑚𝑝 for matrilateral-parallel, 𝑐𝑚𝑐 for matrilateral-cross—see Figure 3.1). Under the model,

we computed limiting distributions for pairwise values of the time to the most recent common

ancestor (𝑇𝑀𝑅𝐶𝐴) for two autosomal lineages in the same individual, two X-chromosomal lineages

in the same individual, two autosomal lineages in different individuals, and two X-chromosomal

lineages in different individuals (Table 3.1). The results rely on 𝑁 → ∞ limits via the separation-

of-time-scales method of Möhle (1998), in which a “fast” process induces a nonzero probability

of instantaneous coalescence; the remaining coalescence occurs by a “slow” process that takes a

positive amount of time. They can be regarded as approximate for finite populations.

ROH lengths are inversely related to within-individual coalescence times, and IBD lengths

are inversely related to between-individual coalescence times. Hence, the 𝑇𝑀𝑅𝐶𝐴 calculations

in our model give rise to predictions about features of autosomal and X-chromosomal ROH and

IBD. In general, because a population has fewer copies of an X-chromosomal locus than an au-

tosomal locus, X-chromosomal coalescence times are smaller than autosomal coalescence times.

We showed that in relation to values seen in a non-consanguineous population, X-chromosomal

within-individual coalescence times are reduced by consanguinity to a greater extent than are X-

chromosomal between-individual coalescence times (Cotter et al., 2021, Table 1). Here, extending

the results on genomic sharing from Palamara et al. (2012), we use the limiting coalescence-time

distributions from Cotter et al. (2022) to derive theoretical predictions for features of ROH and

IBD-sharing on the X-chromosome and the autosomes.
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A B C D

Figure 3.1: X chromosomes in first-cousin mating schemes. (A) Patrilateral-parallel. (B) Patrilateral-cross.
(C) Matrilateral-parallel. (D) Matrilateral-cross.

Chromosome Cumulative distribution Equation from
Cotter et al. (2022)

Within (ROH) Autosomes 1 − 1− 𝑐1
4

1− 3
16𝑐1

𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)
Eq. C2

X 1 − 1− 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐
2

1− 5
16𝑐𝑚𝑝− 3

8𝑐𝑚𝑐
𝑒
− 𝑡

3𝑁

(
1+

𝑐𝑚𝑝
16 − 𝑐𝑚𝑐

8
1− 5

16 𝑐𝑚𝑝 − 3
8 𝑐𝑚𝑐

)
Eq. 37

Between (IBD) Autosomes 1 − 𝑒
− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)
. Eq. C3

X 1 − 𝑒
− 𝑡

3𝑁

(
1+

𝑐𝑚𝑝
16 − 𝑐𝑚𝑐

8
1− 5

16 𝑐𝑚𝑝 − 3
8 𝑐𝑚𝑐

)
Eq. 38

Table 3.1: Limiting cumulative distribution functions for coalescence times for two X-chromosomal and
two autosomal lineages sampled within- and between-individuals. Equations are taken from Cotter et al.
(2022).

Expected X-chromosomal:autosomal total genomic sharing

To derive an expectation under our models of ROH and IBD-sharing with consanguinity, we begin

by modifying eq. 3.1, once again switching to continuous time, 𝑡 . Because only the coalescence-

time distribution depends on the underlying demography—the population size and the rates of

first-cousin consanguinity—it suffices to apply 𝑝 (𝑡𝑚𝑟𝑐𝑎 = 𝑡 | 𝜃 ) and 𝜌 in different versions of the

demographic model.

It is convenient to begin with between-individual coalescence times and IBD-sharing. Using

the coalescence-time distributions in Table 3.1, the time to the most recent common ancestor for

two lineages in two separate individuals follows a coalescent with the population size scaled based

on the rates for the different types of consanguinity. Converting the cumulative distributions in Ta-

ble 3.1 to their probability density functions and annotating 𝜃 = {4𝑁, 𝑐1} and 𝜃 = {3𝑁, 𝑐𝑚𝑝 , 𝑐𝑚𝑐}
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for the autosomes and X chromosome, respectively, we have

𝑝𝐴 (𝑡𝑚𝑟𝑐𝑎 = 𝑡 | 𝜃 = {4𝑁, 𝑐1}) =
1

4𝑁
(
1 − 3

16𝑐1
) 𝑒− 𝑡

4𝑁

(
1

1− 3
16 𝑐1

)
, (3.6)

𝑝𝑋 (𝑡𝑚𝑟𝑐𝑎 = 𝑡 | 𝜃 = {3𝑁, 𝑐𝑚𝑝 , 𝑐𝑚𝑐}) =
1 + 𝑐𝑚𝑝

16 − 𝑐𝑚𝑐

8

3𝑁
(
1 − 5

16𝑐𝑚𝑝 − 3
8𝑐𝑚𝑐

) 𝑒− 𝑡
3𝑁

(
1+

𝑐𝑚𝑝
16 − 𝑐𝑚𝑐

8
1− 5

16 𝑐𝑚𝑝 − 3
8 𝑐𝑚𝑐

)
. (3.7)

We solve for the expected fraction of the autosomes and the X chromosome appearing in IBD

segments (using Palamara et al., 2012, eq. 9). For the autosomes, using eq. 3.6 for the coalescence-

time distribution and parameterizing recombination by 𝜌 = 𝑡
50 , the expected fraction of the

autosomes shared identically by descent in a population with 𝑁 mating pairs and proportion

𝑐1 = 𝑐𝑝𝑝 + 𝑐𝑝𝑐 + 𝑐𝑚𝑝 + 𝑐𝑚𝑐 of first-cousin mating per generation is

𝔼𝐴
𝑅,𝑏

[
𝑓

����𝜃 = {4𝑁, 𝑐1}, 𝜌 =
𝑡

50

]
=

∫ ∞

0
𝑝𝐴 (𝑡 | 𝜃 ) ×

[(
1 + 𝑢𝑡

50

)
𝑒−

𝑢𝑡
50

]
𝑑𝑡

=
25

[
25 + 4𝑁

(
1 − 3

16𝑐1
)
𝑢
][

25 + 2𝑁
(
1 − 3

16𝑐1
)
𝑢
]2 . (3.8)

Here, we have written 𝔼𝐴
𝑅,𝑏

[𝑓 ] for the expected fraction of the autosomal genome shared in 𝑅 ∈

[𝑢,∞) between individuals (with the subscript𝑏 differentiating this quantity from a corresponding

expectation within individuals). For the X chromosome, using eq. 3.7 for coalescence times and

𝜌 = 𝑡
75 for recombination, we have

𝔼𝑋
𝑅,𝑏

[
𝑓

����𝜃 = {3𝑁, 𝑐𝑚𝑝 , 𝑐𝑚𝑐}, 𝜌 =
𝑡

75

]
=

∫ ∞

0
𝑝𝑋 (𝑡 | 𝜃 ) ×

[(
1 + 𝑢𝑡

75

)
𝑒−

𝑢𝑡
75

]
𝑑𝑡

=

25
[
25 + 2𝑁

(
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Next, relying on the within-individual coalescence-time distributions for two lineages, we use a

similar framework to evaluate the expected fraction of the genome that lies in runs of homozygos-

ity. A point mass exists for the probability of instantaneous coalescence at 𝑡 = 0 in the cumulative
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distributions in Table 3.1:
( 𝑐1

16
)
/
(
1 − 3

16𝑐1
)

for the autosomes and
( 3

16𝑐𝑚𝑝 + 1
8𝑐𝑚𝑐

)
/
(
1 − 5

16𝑐𝑚𝑝 − 3
8𝑐𝑚𝑐

)
for the X chromosome, obtained by substituting 𝑡 = 0 in the cumulative distributions. We express

the expected fractions of the autosomes and X chromosome that lie in ROH using the instanta-

neous coalescence probabilities; for non-instantaneous coalescence, we follow eqs. 3.6 and 3.7.

We write 𝔼𝐴
𝑅,𝑤

[𝑓 ] for the expected fraction of the genome shared within individuals in the

length interval 𝑅 ∈ [𝑢,∞). For the autosomes, with recombination parameterized by 𝜌 = 𝑡
50 , we

have
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Similarly, for the X chromosome, with 𝜌 = 𝑡
75 , we have

𝔼𝑋
𝑅,𝑤

[
𝑓

����𝜃 = {3𝑁, 𝑐𝑚𝑝 , 𝑐𝑚𝑐}, 𝜌 =
𝑡

75

]
=

3
16𝑐𝑚𝑝 + 𝑐𝑚𝑐

8

1 − 5
16𝑐𝑚𝑝 − 3

8𝑐𝑚𝑐

+
(
1 −

3
16𝑐𝑚𝑝 + 𝑐𝑚𝑐

8

1 − 5
16𝑐𝑚𝑝 − 3

8𝑐𝑚𝑐

)
×

∫ ∞

0
𝑝𝑋 (𝑡 | 𝜃 ) ×

[(
1 + 𝑢𝑡

75

)
𝑒−

𝑢𝑡
75

]
𝑑𝑡

=

3
16𝑐𝑚𝑝 + 𝑐𝑚𝑐

8

1 − 5
16𝑐𝑚𝑝 − 3

8𝑐𝑚𝑐

+
1 − 𝑐𝑚𝑝

2 − 𝑐𝑚𝑐

2

1 − 5
16𝑐𝑚𝑝 − 3

8𝑐𝑚𝑐

×
©­­­­«

25
[
25 + 2𝑁

(
1− 5

16𝑐𝑚𝑝− 3
8𝑐𝑚𝑐

1+ 𝑐𝑚𝑝

16 − 𝑐𝑚𝑐
8

)
𝑢

]
[
25 + 𝑁

(
1− 5

16𝑐𝑚𝑝− 3
8𝑐𝑚𝑐

1+ 𝑐𝑚𝑝

16 − 𝑐𝑚𝑐
8

)
𝑢

]2

ª®®®®¬
. (3.11)

In Figure 3.2, we explore the effects of the various types of first-cousin consanguinity on the

ratio between X-chromosomal and autosomal ROH and IBD by plotting the ratio of eq. 3.11 to

eq. 3.10 for ROH (Fig. 3.2A) and eq. 3.9 to eq. 3.8 for IBD (Fig. 3.2B). For illustration, we choose

values 𝑁 = 500 for the population size and 𝑢 = 5 cM for the minimal segment length, varying



Theory 77

only one consanguinity rate at a time. Both for IBD and for ROH, increasing the first-cousin con-

sanguinity shifts the X:autosomal ratio away from the expectation of 2 given in eq. 3.5. Patrilateral

consanguinity decreases this ratio below 2, whereas matrilateral consanguinity increases it above

2, with matrilateral-parallel producing a greater increase than matrilateral-cross. The effect of con-

sanguinity on the ROH ratios (Fig. 3.2A) has magnitude greater than the effect on corresponding

IBD ratios (Fig. 3.2B).

These patterns accord with the large-𝑁 limits for the ROH and IBD X:autosomal ratios. For

ROH, the 𝑁 → ∞ limit of the ratio of eq. 3.11 to eq. 3.10 is

lim
𝑁→∞
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𝑅,𝑤

[
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16𝑐1
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8
)

𝑐1
16

(
1 − 5

16𝑐𝑚𝑝 − 3
8𝑐𝑚𝑐

) , (3.12)

recalling that 𝑐1 is the sum of the rates of all four types of first-cousin consanguinity, 𝑐𝑝𝑝 + 𝑐𝑝𝑐 +

𝑐𝑚𝑝 + 𝑐𝑚𝑐 . Varying 𝑐𝑝𝑝 + 𝑐𝑝𝑐 in (0, 1] and holding 𝑐𝑚𝑝 = 𝑐𝑚𝑐 = 0, the limiting ratio is 0: patri-

lateral consanguinity produces no ROH on the X chromosome but a positive level of ROH on the

autosomes. For 𝑐𝑚𝑝 ∈ (0, 1] and all other consanguinity rates set to 0, the limiting ratio varies

from minimum 3 (𝑐𝑚𝑝 → 0) to maximum 39
11 ≈ 3.545 (𝑐𝑚𝑝 = 1). For 𝑐𝑚𝑐 ∈ (0, 1] and all other

consanguinity rates set to 0, the limiting ratio is 2 at the minimum (𝑐𝑚𝑐 → 0) and 13
5 = 2.6 at the

maximum (𝑐𝑚𝑐 = 1). Note that the limiting function is undefined for 𝑐1 = 0.

Similarly for IBD, the 𝑁 → ∞ limit of the ratio of eq. 3.9 to eq. 3.8 is

lim
𝑁→∞
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𝑅,𝑏

[
𝑓

����𝜃 = {3𝑁, 𝑐𝑚𝑝 , 𝑐𝑚𝑐}, 𝜌 = 𝑡
75

]
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1+ 𝑐𝑚𝑝

16 − 𝑐𝑚𝑐
8

)  . (3.13)

At 𝑐1 = 0, this limit is 2, as in the case without consanguinity. If 𝑐𝑝𝑝 + 𝑐𝑝𝑐 = 1 and the other rates

are held at 0, then the limiting ratio is 13
8 = 1.625. If 𝑐𝑚𝑝 = 1, then the limit is 221

88 ≈ 2.511. If

𝑐𝑚𝑐 = 1, then it is 91
40 = 2.275.
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Figure 3.2: Expected ROH and IBD-sharing on the X chromosome relative to the autosomes as a function
of consanguinity. (A) ROH. (B) IBD. For ROH, the ratio is calculated as eq. 3.11/eq. 3.10, and for IBD, it is
calculated as eq. 3.9/eq. 3.8. In both cases, 𝑁 = 500, 𝑢 = 5 cM, and only one type of consanguinity is varied
at a time while holding the others at 0. Patrilateral-parallel and patrilateral-cross consanguinity have the
same effect.

3.3 Data analysis

3.3.1 Data

Demographic data

We consider a large demographic study that counted consanguineous pairs of various types—

including first-cousin consanguineous pairs—among parents of newborns born in Israel 1955-1957

(Goldschmidt et al., 1960). For each of a series of Jewish populations, among first-cousin mat-

ing pairs, Goldschmidt et al. (1960) tabulated numbers of patrilateral-parallel, patrilateral-cross,

matrilateral-parallel, and matrilateral-cross cousin pairs. As a fraction of all mating pairs, we de-

note these quantities 𝑐𝑝𝑝 , 𝑐𝑝𝑐 , 𝑐𝑚𝑝 , and 𝑐𝑚𝑐 , respectively.

For nine populations that overlap between the demographic data of Goldschmidt et al. (1960)

and genetic data used by Kang et al. (2016) and Severson et al. (2019), the rates 𝑐𝑝𝑝 , 𝑐𝑝𝑐 , 𝑐𝑚𝑝 , and

𝑐𝑚𝑐 appear in Table 3.2. In all nine populations, matrilateral consanguinity 𝑐𝑚𝑝 +𝑐𝑚𝑐 is nonzero, so

that consanguinity influences X-chromosomal coalescence times, and hence ROH and IBD-sharing

for both autosomes and X chromosomes.
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Frequency of first-cousin mating pairs (%)

Population Patrilateral
parallel (𝑐𝑝𝑝 )

Patrilateral
cross (𝑐𝑝𝑐 )

Matrilateral
parallel (𝑐𝑚𝑝 )

Matrilateral
cross (𝑐𝑚𝑐 )

Ashkenazi 0.507 0.296 0.465 0.084
Iranian 4.215 2.576 4.684 4.450
Iraqi 4.483 2.759 5.724 3.448
Libyan 2.013 2.685 0.671 0.671
Moroccan 0.794 0.794 1.984 1.587
Sephardi 0.329 0.494 0.988 1.318
Syrian 0.985 0.493 0.985 1.232
Tunisian 2.685 1.342 4.027 2.685
Yemenite 3.347 1.071 1.874 1.606

Table 3.2: Rates of the four different first-cousin mating types across 9 Jewish populations. Values are cal-
culated from Tables 1 and 3 of Goldschmidt et al. (1960) as fractions of all mating pairs that are first-cousin
pairs of particular types (omitting one double-first-cousin pair from both of its constituent categories of
first-cousin pairs). As in Kang et al. (2016), the population listed as “Sephardi” corresponds to the “Turkey”
population in Goldschmidt et al. (1960); the population listed as “Iranian” corresponds to the “Persia” pop-
ulation.

Autosomal genetic data

For the autosomes, we used genetic data from Kang et al. (2016), consisting of 202 Jewish indi-

viduals from 18 populations and 2,903 non-Jewish individuals from 123 populations, with 257,091

SNPs. These data are a merged data set constructed from data from Behar et al. (2013) and from

the HGDP-CEPH and HapMap panels, as studied by Verdu et al. (2014). From these data, as in

Severson et al. (2019), we consider the subset of 202 individuals from 18 Jewish populations, using

the non-Jewish individuals only for phasing. These are the same individuals and same genotypes

used by Kang et al. (2016) to call autosomal ROH segments and by Severson et al. (2019) to call

autosomal IBD segments. We use the autosomal ROH segments directly from Kang et al. (2016),

but we perform our own calls of autosomal IBD segments with updates of the method used by

Severson et al. (2019).

X-chromosomal genetic data

For the X chromosome, we used genotypes from Behar et al. (2013). Beginning with 1,774 individ-

uals and 32,823 SNPs, we first removed SNPs that were completely missing or monoallelic. Next, in

individuals labeled as males, we verified the label by assessing heterozygosity of X-chromosomal
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genotypes, converting the small number of heterozygous genotypes to missing data (Figure 3.3).

We then removed, in sequence, SNPs missing in a large number of individuals (>200) and individ-

uals missing a large number of SNPs (>2,500).

After processing, the data contained 1,647 individuals (1,227 males, 420 females) and 13,052

SNPs, comparable to the SNP density in the autosomal data (Figure 3.3). This collection contains

168 Jewish individuals from 18 populations (Table 3.3) and 1,479 non-Jewish individuals. We focus

on the Jewish individuals for our analysis and include non-Jewish individuals only for phasing of

both autosomal and X-chromosomal genotypes.

Females MalesPopulation Autosomes X Autosomes X Demographic data?

Ashkenazi 5 5 24 22 ✓

Iranian 10 9 2 1 ✓

Iraqi 5 5 8 5 ✓

Libyan 0 0 6 6 ✓

Moroccan 12 10 6 5 ✓

Sephardi 5 5 17 14 ✓

Syrian 0 0 2 2 ✓

Tunisian 5 5 1 1 ✓

Yemenite 12 11 6 4 ✓

Algerian 1 1 4 4
Azerbaijani 4 1 7 7
Cochin 2 0 5 4
Ethiopian 14 12 1 0
Georgian 2 0 5 4
Italian 3 3 7 7
Kurdish 3 3 7 6
Mumbai 0 0 6 4
Uzbekistani 2 1 3 1
Total 85 71 117 97

Table 3.3: Numbers of sampled individuals in Jewish populations. Values for autosomes correspond to the
202 samples used by Kang et al. (2016), and values for the X chromosome correspond to the 168 individuals
examined here. The “Demographic Data” column indicates the presence of rate data for the four types
of first-cousin consanguinity in Goldschmidt et al. (1960)). As in Kang et al. (2016), the population listed
as “Sephardi” in the table corresponds to the “Turkey” population in Goldschmidt et al. (1960), and the
population listed as “Iranian” in the table corresponds to the “Persia” population in Goldschmidt et al. (1960).
Note that quality control procedures differ on the X relative to the autosomes, so that fewer individuals are
often available for the X chromosome.
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1,774 individuals!
32,823 SNPs!

Remove SNPs that are 
completely missing or 

monoallelic!

1,774 individuals!
28,668 SNPs!

Replace heterozygous 
genotypes in males 

with “missing”!

4,148 monoallelic SNPs!
7 completely missing SNPs!

5,080 genotypes 
replaced!

1,774 individuals!
28,668 SNPs!

Determine exclusion threshold 
of the number of individuals 

from which a SNP is missing!
Threshold = !
200 individuals!

Remove SNPs that 
are missing in more 
than 200 individuals!

15,616 SNPs!

1,774 individuals!
13,052 SNPs!

Determine exclusion threshold 
of the number of SNPs each 

individual is missing!

Threshold = !
2,500 SNPs!

Remove individuals 
that are missing more 

than 2,500 SNPs!
127 individuals!

1,647 individuals!
13,052 SNPs!

Figure 3.3: Pipeline for processing X-chromosomal data from Behar et al. (2013).

Data availability

For the autosomal data, see Kang et al. (2016); for the X-chromosomal data, see Behar et al. (2013).

The demographic data on consanguinity are reported in Goldschmidt et al. (1960).

3.3.2 Methods

ROH

ROH lengths for the autosomes were taken directly from Kang et al. (2016). These ROH lengths

were classified by Kang et al. (2016) into 3 length classes; for our analyses, we used the total length

of all classes.

To measure ROH lengths for the X chromosome, we followed the procedure of Kang et al.

(2016), with four modifications to account for differences between the X chromosome and auto-

somes. (1) In calculating sample allele frequencies for the X chromosome for each SNP in each
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Population LOD score cutoff
Algerian 0.2687779
Ashkenazi 2.193981
Azerbaijani 0.9832058
Ethiopian 3.118125
Iranian 0.9270845
Iraqi 1.302212
Italian 1.491206
Kurdish 1.101134
Moroccan 1.611013
Sephardi 2.135594
Tunisian 0.6681123
Uzbekistani -0.0000279
Yemenite 1.710681

Table 3.4: Log-likelihood (LOD) score cutoffs from Kang et al. (2016) used for calling ROH in the 13 Jewish
populations with female data.

population, we calculated the allele frequency with males contributing one allele and females con-

tributing two. As in Kang et al. (2016), we performed 40 Bernoulli draws with this “true” allele

frequency to obtain a sample allele frequency. This procedure reduces sample-size effects on ROH

calls. (2) We used only females for identifying ROH, as males have only a single X chromosome.

(3) For overlapping windows of 30 SNPs, Kang et al. (2016) calculated a log-likelihood (LOD) score

to determine if windows were autozygous. The distribution of all LOD scores in a population was

then used to set the threshold for calling ROH in the population. For consistency, and because iden-

tification of LOD score cutoffs for X-chromosomal data is more uncertain than for the autosomes

due to a smaller number of X-chromosomal ROH available in our relatively small sample size, we

used the autosomal LOD score cutoffs from Kang et al. (2016) rather than using X-chromosome-

specific LOD scores (Table 3.4). (4) Due to the smaller amount of data available for subdividing

ROH into length classes, we did not attempt to determine length classes for X-chromosomal ROH.

For each population, we summarized ROH lengths on the autosomes and X chromosome as the

mean total proportion of the genome contained in ROH. First, we calculated the mean total ROH

length as the sum of the lengths of ROH segments across all individuals in a population divided by

the total number of individuals, considering only females for the X chromosome. For autosomes,
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we normalized this quantity by 2,881.03 Mb for the combined length of chromosomes 1 through

22; for the X chromosome, we used 155.27 Mb. We base these lengths on human genome assembly

GRCh37, as reported in the UCSC Genome Browser (Kent et al., 2002).

IBD-sharing

We calculated autosomal IBD-sharing using the data from Kang et al. (2016). For each chromo-

some, we phased the full data set of 3,105 individuals using Beagle 5.1 (Browning and Browning,

2007) and default parameters (burnin=6, iterations=12, phase-states=280, impute=false,

ne=1,000,000, window=40.0, overlap=4.0, seed=-99,999), with the GRCh37 genetic map for

the map parameter (as provided with Beagle). We then considered the subset of 202 individuals in

18 Jewish populations, calling IBD segments using Refined IBD (Browning and Browning, 2013)

with default parameters (window=40.0, lod=3.0, length=1.5, trim=0.15) and the map used for

phasing. Our autosomal IBD calculations employed the method and data of Severson et al. (2019),

except that we used a newer Beagle version and called IBD-sharing only on the subset of Jewish

individuals rather than the whole sample.

For the X chromosome, we used data from the full 1,647 individuals (including the 168 Jewish

individuals). We recoded alleles in males as pseudodiploid, as needed by Beagle 5.1 and Refined

IBD. We then phased the 1,647 individuals with Beagle 5.1 using the same parameters and map as

used for the autosomes. In the phased data, considering only the Jewish populations, we calculated

IBD segments using Refined IBD in the same manner as for the autosomes. We then removed all

duplicate IBD segments that resulted from pseudodiploid coding in males.

In each population, we summarized IBD-sharing as the mean total IBD proportion. That is,

for each pair of individuals, we called IBD-sharing on the autosomes between four pairs of haplo-

types, two in each individual in the pair. On the X chromosome, IBD comparisons considered one

pair of haplotypes for pairs of males, two pairs for a male and a female, and four pairs for pairs

of females. Thus, we divided the total IBD length between two individuals—summing across pairs

of X chromosomes, one from one individual and one from the other—by one (two haplotypes),

two (three haplotypes), or four (four haplotypes). We calculated mean total IBD length as the
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mean across pairs of individuals after accounting for the number of pairwise haplotype compar-

isons. We then normalized this quantity, using the same genomic lengths as for ROH, to determine

population-wise mean IBD proportions.

Population subsets

Because individuals with available X-chromosomal data represent a subset of the individuals with

available autosomal data, in the following analyses, we used only a subset of the 18 populations.

In particular, when comparing autosomal and X-chromosomal ROH, we considered only 13 popu-

lations, omitting 5 populations (Cochin, Georgian, Libyan, Mumbai, Syrian) for which no females

and hence no X-chromosomal ROH calls were available (Table 3.3).

3.3.3 Results

Our theoretical results predict an increased proportion of ROH and IBD on the X chromosome

relative to the autosomes as well as a positive relationship between IBD-sharing and ROH: in-

creasing consanguinity decreases 𝑇𝑀𝑅𝐶𝐴 for two alleles within individuals as well as two alleles

between individuals, in turn increasing both ROH and IBD-sharing (Severson et al., 2019; Cotter

et al., 2021).

Empirical ROH levels and IBD levels are greater on the X chromosome than on the autosomes

(Figure 3.5). The smaller total population size of the X chromosome, 3𝑁 compared to 4𝑁 in a

population with equal sex ratio, produces lower coalescence times for the X chromosome, in turn

giving rise to longer ROH and IBD segments.

We consider regressions of IBD proportions on ROH proportions, evaluating the coefficient of

determination 𝑅2 and the 𝑃-value for the null hypothesis of a regression slope of 0. In Figure 3.4,

we plot the relationship between mean total IBD and ROH proportions in 13 populations, for both

the autosomes and the X chromosome. Severson et al. (2019) previously performed this analysis

for autosomes; here we compare autosomes and the X chromosome. In accord with the theoretical

prediction, we see that IBD-sharing increases with ROH for the autosomes (Figure 3.4A;𝑅2 = 0.27),

though not at the 𝑃 = 0.05 significance level (𝑃 = 0.07). It also increases for the X chromosome

(Figure 3.4B; 𝑅2 = 0.49, 𝑃 = 0.008), for which the relationship is stronger.
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Figure 3.4: Mean genomic proportion contained in IBD segments versus mean genomic proportion con-
tained in ROH segments. (A) Autosomes. (B) X chromosome. Thirteen populations are color-coded by
regional group as in Kang et al. (2016) and Severson et al. (2019): Ethiopian, orange; European, blue; Middle
Eastern, brown; North African, yellow; Yemenite, green. Population labels: Al, Algerian; As, Ashkenazi;
Az, Azerbaijani; E, Ethiopian; Iq, Iraqi; Ir, Iranian; It, Italian; K, Kurdish; Mo, Moroccan; Se, Sephardi; T,
Tunisian; U, Uzbekistani; Y, Yemenite. The regression equation is 𝑦 = 0.074𝑥 − 0.002 (𝑅2 = 0.27, 𝑃 = 0.07)
for autosomes and 𝑦 = 0.068𝑥 − 0.005 (𝑅2 = 0.49, 𝑃 = 0.008) for the X chromosome. Both plots use the 13
Jewish populations with ROH data available for the X chromosome.

To explore the relationship between ROH patterns on the X chromosome and on autosomes, we

next regress—with a fixed intercept of 𝑦 = 0—the mean ROH genomic fraction on the autosomes

onto the corresponding mean for the X chromosome. X-chromosomal and total autosomal ROH

are positively related (Figure 3.6A; 𝑅2 = 0.96, 𝑃 = 6.13 × 10−10). The regression slope exceeds 2:

for each 1% increase in total ROH on the autosomes, we see a 2.1% increase on the X chromosome.

This greater increase for the X chromosome accords with the smaller X-chromosomal population

size and reduced recombination rate—which inflate ROH for the X chromosome.

Next, having detected a relationship between total lengths in X-chromosomal and autosomal

ROH, we compare genomic fractions of IBD-sharing. Fixing the regression intercept at 𝑦 = 0, X-

chromosomal IBD increases with autosomal IBD (Figure 3.6B; 𝑅2 = 0.87, 𝑃 = 1.45× 10−6). A 1.6%

increase in X-chromosomal IBD-sharing occurs for each 1% increase in autosomal IBD-sharing,

consistent with the reduced population size of the X chromosome and its resulting reduction in

coalescence times and increase in IBD segment length.

For the seven populations for which demographic estimates of consanguinity and genomic

data are both available, we can compare the empirical ratio of the fractions of the X chromosome
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Figure 3.5: Proportion of autosomal and X-chromosomal ROH and IBD in each population. (A) ROH. (B)
IBD. Populations are arranged in decreasing order by the proportion of the X-chromosomal genome lying
in ROH.

and autosomal genome that lie in ROH to a theoretical prediction. Inserting the consanguinity

rates from Table 3.2 and a range of values of the number of mating pairs 𝑁 from 500 to 50000 into

eqs. 3.11 and 3.10, we obtain predictions for the ratio of eqs. 3.11 and 3.10. The nontrivial patrilateral

consanguinity in these populations, sometimes exceeding the matrilateral consanguinity, leads to

predictions that lie below the ratio of 2 predicted from eq. 3.5 in the case of no consanguinity

(Table 3.5). The empirical ratios tend to be near but somewhat greater than the theoretical range,

suggesting that while the differing numbers of autosomal genomes and X chromosomes and the

effects of consanguinity in part explain differences in autosomal and X-chromosomal ROH, other

factors also contribute.

For IBD, a similar calculation of the theoretical ratio of X-chromosomal and autosomal ROH,

using eqs. 3.9 and 3.8, places the seven populations into similar ranges. This similarity illustrates

the lesser effect of differences in consanguinity rates on the predicted ratio of X-chromosomal and

autosomal IBD compared to the corresponding ratio for ROH (Figure 3.2). Empirical IBD ratios tend

to be farther from the predicted range than are empirical ROH ratios, indicating that the factors
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we have considered—population-size differences between the X chromosome and autosomes, and

consanguinity rates—may be less determinative of IBD patterns than of ROH patterns.

3.4 Discussion

This study has investigated the effect of consanguinity on X-chromosomal ROH and IBD-sharing.

Under a coalescent model with consanguinity, we had previously obtained autosomal (Severson

et al., 2019, 2021) and X-chromosomal (Cotter et al., 2021, 2022) distributions of coalescence times.

Here, we have combined results on coalescence times with calculations based on properties of

recombination to predict features of ROH and IBD-sharing under the model. We have also com-

pared the predictions with empirical patterns in ROH and IBD-sharing in populations for which

demographic measures of consanguinity have been reported.

For the coalescence times, we had previously observed that under the model, patrilateral first-

cousin mating does not affect X-chromosomal coalescence times, and matrilateral first-cousin mat-

ing reduces X-chromosomal coalescence times relative to the non-consanguineous case; consan-

guinity produces a greater relative decrease in coalescence times for X chromosomes than for

autosomes (Cotter et al., 2021, 2022). Owing to the inverse relationship between genomic sharing

around a site and the coalescence time at that site (Palamara et al., 2012; Carmi et al., 2014; Brown-

ing and Browning, 2015), corresponding results are reflected in ROH and IBD-sharing calculations

under the model. The model predicts longer ROH and IBD-sharing on the X chromosome than on

autosomes, owing to three factors: the smaller population size for X chromosomes produces a

smaller coalescence time, the stronger effect of matrilateral consanguinity reduces coalescence

times to a greater extent relative to the non-consanguineous model, and reduced recombination

in X chromosomes increases ROH and IBD tract lengths.

In accord with this prediction, in data from Jewish populations, we observed that ROH and IBD-

sharing did indeed cover a larger fraction of the X chromosome than the autosomes (Figure 3.5).

Comparing X-chromosomal to autosomal ROH lengths, we observed an increased genomic frac-

tion of ROH on the X-chromosome relative to the autosomes: a 1% increase in autosomal ROH
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Figure 3.6: Mean genomic proportion contained in ROH and on the autosomes relative to the X chromo-
some. (A) ROH. (B) IBD. The solid line is the theoretical prediction 𝑦 = 2𝑥 . The dashed line represents a
regression with intercept fixed at 0: 𝑦 = 2.10𝑥 (𝑅2 = 0.96, 𝑃 = 6.13 × 10−10) (A), 𝑦 = 1.60𝑥 (𝑅2 = 0.87,
𝑃 = 1.45 × 10−6) (B).

gives rise to a 2.1% increase on the X chromosome (Figure 3.6A). For IBD-sharing, a 1% increase in

autosomal IBD-sharing predicts a 1.6% increase on the X chromosome (Figure 3.6B).

The 2.1% and 1.6% increases on the X-chromosome generally align with model predictions. In

a constant-sized population with no consanguinity, our model-based computations found that the

ratio of the expected total fractions of the X chromosome and autosomes that lie in ROH or IBD

segments approaches 2 for large 𝑁 (eq. 3.5). In other words, for each 1% increase in the fraction

of the autosomal genome covered by ROH or IBD segments, an increase of 2% is predicted for the

corresponding coverage of the X chromosome.

We hypothesized that a portion of the increase in X-chromosomal ROH coverage for each

1% increase in autosomal ROH coverage (Figure 3.6A) differing from 2% and the corresponding

difference from 2% for IBD was attributable to the effects of consanguinity—with matrilateral con-

sanguinity increasing the prediction above 2% and patrilateral consanguinity decreasing it below
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Population
ROH IBD

Theoretical X:A ratio Empirical
X:A ratio

Theoretical X:A ratio Empirical
X:A ratioMinimum Maximum Minimum Maximum

Ashkenazi 1.541 1.935 2.247 1.542 1.991 1.633
Iranian 1.516 1.818 2.126 1.525 1.968 0.942
Iraqi 1.518 1.824 1.921 1.527 1.974 1.608
Moroccan 1.537 1.934 2.434 1.539 1.988 3.602
Sephardi 1.539 1.950 1.969 1.540 1.988 2.268
Tunisian 1.529 1.877 1.568 1.534 1.983 1.057

Table 3.5: Theoretical and empirical ratios of the proportion of the X-chromosome to the proportion of the
autosomal genome lying in ROH and IBD segments. The theoretical ratio is the ratio of eqs. 3.11 and 3.10
for ROH and the ratio of eqs. 3.9 and 3.8 for IBD, inserting consanguinity rates from Table 3.2 and setting
𝑢 = 0.1 cM for the the minimum size of ROH and IBD. We report the minimum and the maximum theoretical
ratios achieved when varying 𝑁 in the range [500, 50000]. The empirical ratio is calculated using the ROH
and IBD proportions obtained via the Methods subsections on ROH and IBD, respectively.

2%. This potential attribution is compatible with the observation that the populations studied pos-

sess nonzero consanguinity rates, both matrilateral and patrilateral (Table 3.2). Using eqs. 3.8–3.11

to assess the effect of demographic consanguinity rates on ROH X:A ratios directly (Table 3.5), we

see that agreement with predicted ranges is generally closer for ROH than for IBD.

That the empirical analysis generally follows model predictions, with greater sharing on the

X chromosome than the autosomes in an amount close to the numerical prediction, supports the

value of the model. However, many factors might contribute to deviations of the empirical X-

chromosomal and autosomal ROH and IBD patterns from the predictions. First, processes not

considered in the model influence differences in genetic variation between X chromosomes and

autosomes. For example, differences in the numbers of mating males and females or differing male

and female variance of reproductive success can alter effective population size for X chromosomes

relative to autosomes (Webster and Wilson Sayres, 2016; Cai et al., 2022). Recombination differ-

ences between X chromosomes and autosomes beyond the 2
3 we have considered, with different

autosomes having different rates per Mb (Kong et al., 2002), can affect conversions of𝑇𝑀𝑅𝐶𝐴 values

to ROH and IBD lengths. These differences can also introduce differences in phasing and ROH and

IBD detection; the detection problem is possibly also affected by our use of autosomal ROH cutoffs

rather than X-chromosome-specific values in assigning X-chromosomal ROH. In particular, ROH



90 Genomic sharing on the X chromosome

levels might be inflated by use of the autosomal LOD score cutoff for the higher-homozygosity X

chromosome.

Beyond these concerns about ROH and IBD detection, a number of limitations may affect

our empirical results. Our theoretical analysis relies on centimorgan measurements, whereas we

analyze the data in megabases; a more precise comparison of X chromosomal and autosomal ROH

and IBD could be performed by use of a genetic map. The comparison of theoretical and empirical

ratios in Table 3.5 makes use of minimal genomic-sharing cutoffs; we used a cutoff standardized

across all theory-based calculations, rather than adding complexity by choosing separate cutoffs

for each component of the analysis (ROH vs. IBD, X-chromosomal vs. autosomal, and different

populations).

We also note that consanguinity rates are unlikely to be stable over time in real populations,

as the model assumes. For example, consanguinity rates from Goldschmidt et al. (1960), measured

around the mean birth year of the sampled individuals (Kang et al., 2016), represent births only at

the single time point of 1955-1957; the number of generations over which they would have applied

is unclear. Indeed, consanguinity rates have recently declined in some of the sampled populations

(Tsafrir and Halbrecht, 1972; Cohen et al., 2004).

Finally, the data set itself is also limited by a small number of females, so that few data points

contribute to inferences on X-chromosomal ROH. We have used these data due to availability of

demographic consanguinity rates measured for the four first-cousin types. Additional method-

ological choices could potentially be investigated in larger genomic data sets in consanguineous

populations (e.g. Arciero et al., 2021), and an ideal data set would include both large sample sizes

as well as demographic estimates of consanguinity.

We have examined how coalescent models and ROH and IBD measurements on the X and the

autosomes can provide information about sex-biased phenomena. Genomic effects of numerous

sex-biased processes have been investigated extensively in theoretical models and data, particu-

larly in relation to human populations (Wilkins and Marlowe, 2006; Ellegren, 2009; Arbiza et al.,

2014; Goldberg and Rosenberg, 2015; Webster and Wilson Sayres, 2016). Many organisms possess

mating schemes that could induce different kinship levels for autosomes and sex chromosomes

(e.g. sex-specific processes and the ZW system in birds, Pizzari et al. (2004); Schield et al. (2021)). As
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genomic data on ROH and IBD data proliferate in diverse organisms (e.g. Florida scrub jays (Chen

et al., 2016), dogs (Mooney et al., 2021)), our approach of examining coalescence times, ROH, and

IBD-sharing can potentially contribute to understanding genomic effects of a variety of mating

systems.
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Chapter 4

A rarefaction approach for measuring

population differences in rare and

common variation

The following chapter and figures were originally published as:

Cotter, D. J., E. F. Hofgard, J. Novembre, Z. A. Szpiech, and N. A. Rosenberg, 2023 A rarefaction

approach for measuring population differences in rare and common variation. GENETICS 224:

iyad070.

https://doi.org/10.1093/genetics/iyad070

Abstract

In studying allele-frequency variation across populations, it is often convenient to classify an al-

lelic type as “rare,” with nonzero frequency less than or equal to a specified threshold, “common,”

with frequency above the threshold, or entirely unobserved in a population. When sample sizes

differ across populations, however, especially if the threshold separating “rare” and “common” cor-

responds to a small number of observed copies of an allelic type, discreteness effects can lead a
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sample from one population to possess substantially more rare allelic types than a sample from an-

other population, even if the two populations have extremely similar underlying allele-frequency

distributions across loci. We introduce a rarefaction-based sample-size correction for use in com-

paring rare and common variation across multiple populations whose sample sizes potentially

differ. We use our approach to examine rare and common variation in worldwide human popula-

tions, finding that the sample-size correction introduces subtle differences relative to analyses that

use the full available sample sizes. We introduce several ways in which the rarefaction approach

can be applied: we explore dependence of allele classifications on subsample sizes, we permit more

than two classes of allelic types of nonzero frequency, and we analyze rare and common variation

in sliding windows along the genome. The results can assist in clarifying similarities and differ-

ences in allele-frequency patterns across populations.

4.1 Introduction

The study of data on genetic variation often begins with simple questions. Which alleles are

present? In which populations are they present, and where are they absent? Which alleles are com-

mon, and which are rare? Often, the first calculations that an analyst performs on a population-

genetic dataset seek to answer such questions.

To take one example, a recent study of Witt et al. (2022) sought to characterize genetic varia-

tion in modern and archaic populations, with a particular interest in the sharing of alleles among

groups. In their Figure 5, Witt et al. (2022) tabulated, for alleles classified as archaic, the fractions

of those alleles that appear in modern Europeans, South Asians, and East Asians, in pairs among

these three groups, and in all three groups.

In studies of presence and absence of alleles in populations, differing sample sizes among the

groups can influence the resulting assessments. For example, an allele absent in a small sample

might eventually be found in a larger sample, so that a population with a sample size that is small

might appear to possess fewer alleles than a population with one that is large. This problem is ad-

dressed by the rarefaction method, borrowed for population genetics (e.g. Kalinowski, 2004) from
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ecological work on species diversity (Hurlbert, 1971; Gotelli and Colwell, 2001). Using a combi-

natorial formula, given sample size 𝑁 𝑗 for population 𝑗 and a fixed value of 𝑔 ≤ 𝑁 𝑗 , all possible

subsamples of size 𝑔 are considered, and the expected number of distinct alleles across random

samples of size 𝑔 is calculated. Multiple populations of different sample size can be compared by

examining subsamples of equal size 𝑔.

Kalinowski (2004) devised a rarefaction-based calculation of “private allelic richness,” a mea-

sure of the fraction of alleles that are private to a particular population—considering subsamples

of size 𝑔 from each of a series of populations. Generalizing this concept, Szpiech et al. (2008)

introduced a calculation of the fraction of alleles that are private to a set of populations—that is,

found in each of the populations—when subsamples of size𝑔 are taken in each population. Szpiech

et al. (2008) examined geographic distributions of alleles in samples from multiple populations, all

standardized with the same subsample size 𝑔. Thus, for example, for Populations 1, 2, and 3, with

different sample sizes, the rarefaction-based calculation enables a comparison of the fraction of

alleles found only in 1, only in 2, only in 3, in 1 and 2 but not 3, in 1 and 3 but not 2, in 2 and 3 but

not 1, and in all three groups—assuming that all three groups have subsamples of equal size.

Recently, Biddanda et al. (2020) introduced a new computation and visualization to compare

presence and absence of alleles across populations. Seeking to describe geographic distributions

of alleles across multiple populations—as in Szpiech et al. (2008) and Witt et al. (2022)—Biddanda

et al. (2020) made an additional distinction between alleles that are present and rare and those

that are present and common. For each of several populations, they classified alleles into three

categories: rare, common, and unobserved. For a population set, they tabulated fractions of alleles

that possess particular classes, illustrating the classifications in new visualizations.

In the same way that sample size can affect presence and absence, sample size can also af-

fect the classification of an allele as present and rare as opposed to present and common. Sup-

pose a locus has the same allele frequencies in Populations 1 and 2, with sample sizes 39 and

40, respectively. Suppose a maximum of 5% is the largest allele frequency classified as rare. An

allele 𝐴 of frequency 5% that is regarded as rare in an infinite population will be regarded as

rare in Population 1 when 1 copy is observed in the sample of size 39. The probability of ob-

serving exactly 1 copy is
(39

1
)
(0.051) (0.9538) ≈ 0.278. The allele will be regarded as rare in
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Population 2 if 1 copy is observed or if 2 copies are observed. The associated probability is(40
1
)
(0.051) (0.9539) +

(40
2
)
(0.052) (0.9538) ≈ 0.548. Hence, as a result of differing sample sizes,

the two populations have the potential to differ dramatically in the number of their truly rare

alleles (that is, rare at the population level) that are classified as rare in samples.

Here, we extend the geographic classification of alleles into categories of rare, common, and

unobserved, as in Biddanda et al. (2020), but accounting for differences in sample size, as in Szpiech

et al. (2008). In particular, we extend the rarefaction approach from Szpiech et al. (2008), which

only considered presence and absence, to account for the three categories of Biddanda et al. (2020):

unobserved, rare, and common. We examine whether the rarefaction correction to make use of

equal sample sizes in the data of Biddanda et al. (2020) influences the interpretation of rare and

common human variation. In the spirit of Biddanda et al. (2020), we also include a variety of

visualizations for understanding sample-size-corrected patterns in the geographic distributions of

rare and common alleles.

4.2 Statistical methods

Consider a single locus in an individual. We henceforth use “allelic type” to refer to one of a set

of possible variants at a locus and “allele” to refer to an observation at a given locus in a single

individual. Considering a locus with 𝐼 ≥ 2 allelic types, we denote by 𝑁𝑖 𝑗 the number of copies of

allelic type 𝑖 observed in a sample from population 𝑗 . By extension, 𝑁 𝑗 =
∑𝐼

𝑖=1 𝑁𝑖 𝑗 is the sample

size of population 𝑗 at the locus. We consider 𝐽 ≥ 2 populations.

Biddanda et al. (2020) declare “rare” allelic types as those with nonzero frequency less than or

equal to 100𝑧% in a population, where 𝑧 is a specified numerical cutoff (they use 𝑧 = 0.05). They

then classify allelic types with frequency greater than 100𝑧% as “common.” This classification gives

rise to their three frequency categories of unobserved, rare, and common. Thus, considering all

𝐽 populations, an allelic type takes on a “pattern” denoted by x = (𝑥1, 𝑥2, . . . , 𝑥 𝐽 ), where each 𝑥 𝑗

has a value in {unobserved, rare, common}, herein shortened to {U, R,C}.
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4.2.1 Three allelic classes: unobserved, rare, and common

For a sample with counts 𝑁𝑖 𝑗 for the 𝐼 allelic types in the 𝐽 populations, we consider subsamples

with specified sizes. Suppose that a sample of size 𝑔 alleles is drawn in each of the 𝐽 populations,

for a total sample size of 𝐽𝑔. We calculate the probability that when we draw a sample of size 𝐽𝑔,

an allelic type has pattern x.

The probability𝑈𝑖 𝑗𝑔 that allelic type 𝑖 is unobserved in a subsample of size 𝑔 from population

𝑗 is

𝑈𝑖 𝑗𝑔 =

(
𝑁 𝑗−𝑁𝑖 𝑗

𝑔

)(
𝑁 𝑗

𝑔

) . (4.1)

Here, the numerator is the number of ways to draw 𝑔 alleles from among the alleles that do not

have allelic type 𝑖 . The denominator is the total number of ways to draw 𝑔 alleles from among the

𝑁 𝑗 alleles in population 𝑗 .

The probability 𝑅𝑖 𝑗𝑔 that allelic type 𝑖 is rare in a subsample of size 𝑔 is the probability of

observing at least 1 and at most ⌊𝑧𝑁 𝑗 ⌋ copies of allelic type 𝑖 in a subsample of size 𝑔. The floor

function accounts for the classification of an allelic type with frequency exactly 100𝑧% as rare

rather than common. The probability 𝑅𝑖 𝑗𝑔 satisfies

𝑅𝑖 𝑗𝑔 =

∑⌊𝑧𝑁 𝑗 ⌋
𝑘=1

[ (𝑁𝑖 𝑗

𝑘

) (𝑁 𝑗−𝑁𝑖 𝑗

𝑔−𝑘
) ](

𝑁 𝑗

𝑔

) . (4.2)

The numerator in eq. 4.2 sums over all possible ways to choose at least 1 and at most ⌊𝑧𝑁 𝑗 ⌋ copies

of allelic type 𝑖 . The denominator again gives the total number of ways to draw 𝑔 alleles from the

population sample size 𝑁 𝑗 .

Finally, the probability that allelic type 𝑖 is common in a sample of size𝑔 taken from population

𝑗 is simply

𝐶𝑖 𝑗𝑔 = 1 −𝑈𝑖 𝑗𝑔 − 𝑅𝑖 𝑗𝑔 . (4.3)

Now that we have probabilities for an allelic type in a single population, we consider all 𝐽

populations to determine the probability of a particular pattern x. The probability that allelic type



98 Rarefaction and genetic variation

𝑖 has pattern x = (𝑥1, 𝑥2, . . . , 𝑥 𝐽 ) in a sample containing 𝑔 alleles each from the 𝐽 populations is

𝐽∏
𝑗=1

𝑓𝑖 𝑗𝑔 (𝑥 𝑗 ), where 𝑓𝑖 𝑗𝑔 (𝑥 𝑗 ) =


𝑈𝑖 𝑗𝑔, 𝑥 𝑗 = U

𝑅𝑖 𝑗𝑔, 𝑥 𝑗 = R

𝐶𝑖 𝑗𝑔, 𝑥 𝑗 = C.

(4.4)

At a locus, we sum across all 𝐼 allelic types to give the expected fraction of allelic types that

have pattern x:
1
𝐼

𝐼∑︁
𝑖=1

𝐽∏
𝑗=1

𝑓𝑖 𝑗𝑔 (𝑥 𝑗 ) . (4.5)

4.2.2 Extension to more than three classes

We can generalize the results describing unobserved, rare, and common allelic types to compute

the probability 𝑃𝑖 𝑗𝑔 of finding an allelic type 𝑖 in population 𝑗 in a specified frequency window,

where arbitrarily many windows are permitted. Define a window (𝑧1, 𝑧2], describing allelic types

with frequency greater than 𝑧1 and less than or equal to 𝑧2. Eq. 4.2 for the probability that a sample

of size 𝑔 has its frequency for allelic type 𝑖 in the window (0, 𝑧] generalizes, and the probability

that allelic type 𝑖 has its frequency in (𝑧1, 𝑧2] is

𝑃𝑖 𝑗𝑔 =

∑⌊𝑧2𝑁 𝑗 ⌋
𝑘=⌊𝑧1𝑁 𝑗 ⌋+1

[ (𝑁𝑖 𝑗

𝑘

) (𝑁 𝑗−𝑁𝑖 𝑗

𝑔−𝑘
) ](

𝑁 𝑗

𝑔

) . (4.6)

Eq. 4.6 can consider arbitrary divisions of the unit interval for frequencies into disjoint inter-

vals. Note that if we instead regard intervals as having a closed lower bound and an open upper

bound, so that we consider the probability that an allelic type has frequency in [𝑧1, 𝑧2), then we

simply change the limits of the sum to ⌈𝑧1𝑁 𝑗 ⌉ and ⌈𝑧2𝑁 𝑗 ⌉ − 1.

4.2.3 Biallelic loci

For biallelic loci, 𝐼 = 2, suppose we are interested in only one specific allelic type. We label this

allelic type by 1 and the other allelic type by 2 and write simplified formulas for𝑈𝑖 𝑗𝑔 and 𝑅𝑖 𝑗𝑔. 𝑁1𝑗
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is the count of allelic type 1 in population 𝑗 and 𝑁2𝑗 is the count of allelic type 2. Then

𝑈𝑖 𝑗𝑔 =

(
𝑁2𝑗
𝑔

)(
𝑁 𝑗

𝑔

) (4.7)

𝑅𝑖 𝑗𝑔 =

∑⌊𝑧𝑁 𝑗 ⌋
𝑘=1

[ (𝑁1𝑗
𝑘

) (𝑁2𝑗
𝑔−𝑘

) ](
𝑁 𝑗

𝑔

) . (4.8)

Eq. 4.4 can then be used to calculate the probability that allelic type 1 has pattern x = (𝑥1, 𝑥2, . . . , 𝑥 𝐽 ).

With three frequency classes in each of 𝐽 populations, allelic type 1 has 3𝐽 possible patterns.

4.3 Data analysis

4.3.1 Biddanda et al. (2020) dataset

Biddanda et al. (2020) used data from the 2504 individuals in the 26 populations of the 1000

Genomes Project (The 1000 Genomes Project Consortium, 2015; Byrska-Bishop et al., 2022) to

explore the relative abundances of different patterns x, considering five “super-populations.” They

used the globally minor allele at each locus—the allelic type at global frequency less than 50%—to

classify each locus as a pattern x = (𝑥1, 𝑥2, . . . , 𝑥 𝐽 ), where 𝐽 = 5.

They placed the 1000 Genomes populations, annotated here by three-letter abbreviations, into

the five super-populations. From 1 to 5, vector entries correspond to African (ESN, GWD, LWK,

MSL, YRI), European (FIN, GBR, IBS, TSI), South Asian (BEB, GIH, ITU, PJL, STU), East Asian (CDX,

CHB, CHS, JPT, KHV), and American super-populations (ACB, ASW, CEU, CLM, MXL, PEL, PUR).

Thus, for example, a locus rare in Africa, common in East Asia, and unobserved elsewhere has

pattern x = {R, U, U, C, U} or RUUCU for short.

Biddanda et al. (2020) considered genome-wide biallelic SNPs, classifying each SNP into one of

35−1 patterns based on the globally minor allele; because each locus is polymorphic by definition,

the pattern UUUUU is omitted in their analysis.

We downloaded the data used by Biddanda et al. (2020) from the 1000 Genomes FTP server (see

“Data availability”). We retained the same super-population groups used by Biddanda et al. (2020).
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After filtering to consider only biallelic SNPs, we determined the globally minor allele for each

SNP. Our definition of the minor allele is the allelic type that, when averaging relative frequencies

across the five super-populations, has frequency below 1
2 ; for 240 sites genome-wide with exactly

50% global frequency for each of the two allelic types, we chose one allelic type at random to be

the “minor” allele. We then tabulated counts of the minor allele for the five super-populations,

disregarding sites for which data were entirely missing in at least one of the five. This process left

us with 95,563,258 SNPs in the 2504 individuals.

4.3.2 Pointwise rarefaction analysis

To evaluate the effect of sample-size correction on the geographic distribution of allelic types, we

applied the rarefaction calculation (eq. 4.4) to the 1000 Genomes SNPs in the five super-populations.

This calculation relies on the biallelic eqs. 4.7 and 4.8, along with eq. 4.3. For an illustrative analysis,

we considered 1,226,225 SNPs on chromosome 22, ensuring that each SNP possessed a sample of

size 500 or greater in each of the five super-populations (the equivalent of 250 diploid individuals).

Thus, for each of a series of values of𝑔, for each SNP, focusing on the minor allele, we obtained

probabilities for each of the 35 = 243 patterns, treating 5% as the maximal frequency for allelic

types treated as rare. For fixed 𝑔, for each of the 243 patterns, we averaged the SNP-specific

probabilities across all SNPs to determine the mean probability that a randomly chosen locus in

the SNP set has a specific pattern. To understand the effect of the subsample size on pattern

probabilities, we modulated the sample size 𝑔 in increments of 10, considering all multiples of 10

in [10, 500].

Next, to study the numbers of super-populations in which variants are common and rare, we

collapsed the 243 patterns into summaries that disregard the identities of the super-populations

in which allelic types are unobserved, rare, and common. For these summaries, we track only

the numbers of U’s, R’s, and C’s for a given allelic type as an ordered triple ( |U|, |R|, |C|). For

example, if an allelic type has the pattern RUUUU, URUUU, UURUU, UUURU, or UUUUR, then it

is summarized as (4, 1, 0). The number of possible summaries is 21.
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4.3.3 Sliding-window analysis

To examine the change in pattern probabilities along the genome, we calculated the probability

distribution of patterns in sliding windows. We tiled the genome with non-overlapping 100-kb

windows. Within each window, we averaged the 21 summaries across SNPs within the window,

still focusing on the globally minor allele at each SNP. For this analysis, we focused on a single

value of 𝑔, choosing 𝑔 = 500, summarizing the patterns using the 21 ordered triples ( |U|, |R|, |C|).

4.3.4 Data availability

We downloaded publicly available data from the 1000 Genomes FTP site: http://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/data collections/1000G 2504 high coverage/working/20190425 NYGC

GATK/. All code used for the analyses is available on GitHub: github.com/djcotter/rarefaction-

rare-vs-common.

4.4 Results

4.4.1 Pointwise rarefaction analysis

Figure 4.1A shows the pointwise probabilities of the various patterns for 1,226,225 SNPs on chro-

mosome 22. The figure visualizes the 11 patterns that have probability 1% or greater at 𝑔 = 250,

grouping the other 232 patterns into a single “other” category; this choice of the intermediate value

of 𝑔 = 250 facilitates visualization of patterns that are probable at high 𝑔 or low 𝑔 but not both.

The highest-frequency pattern for all sample sizes is UUUUU, the probability of observing

no variation across the five super-populations; this pattern is the one most likely to be observed

if an allelic type is present in the full data but extremely rare. Among the other high-frequency

patterns, five of the next six represent allelic types that are rare in one super-population and absent

in the other four; the sixth, RUUUR, is allelic types rare in both the African and American super-

populations, likely a result of admixed African-descended populations in the American super-

population. CCCCC is included; it is the only high-frequency pattern that includes any common

variation.

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/
github.com/djcotter/rarefaction-rare-vs-common
github.com/djcotter/rarefaction-rare-vs-common
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Figure 4.1: Probability that the globally minor allele at a locus has a given geographic distribution pattern
as a function of 𝑔, the number of alleles sampled in each super-population (eq. 4.4). (A) All SNPs on chro-
mosome 22. (B) All non-singleton SNPs on chromosome 22. (C) All SNPs on chromosome 22, normalizing
by 1 − ℙ[UUUUU]. (D) All non-singleton SNPs on chromosome 22, normalizing by 1 − ℙ[UUUUU]. In a
five-letter pattern, U is unobserved, R is rare (>0% and ≤ 5% population frequency), and C is common (>5%).
The order in which super-populations are listed is Africa, Europe, South Asia, East Asia, and the Americas.
For example, RUUUU refers to a minor allele that is rare in Africa and unobserved in each of the other four
super-populations.

Increases in the sample size decrease the frequency of UUUUU and increase the frequencies of

patterns containing rare allelic types. As the sample size increases, the probability increases that

a rare variant is detected in a sample, so that previously unobserved allelic types are increasingly

likely to be observed as rare.
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Figure 4.2: Probability that the globally minor allele at a locus has a given geographic distribution pattern,
considering each of 22 autosomes and the two sex chromosomes. Probabilities are calculated using all non-
singleton SNPs on each chromosome and 𝑔 = 500 (𝑔 = 150 for the Y chromosome). Patterns that are present
at greater than 1% frequency on any autosome are indicated, with all other patterns grouped into the “Other”
category.

In Figure 4.1B, we analyze the effect of extremely rare allelic types on the patterns by discard-

ing all 614,354 SNPs whose minor allele appears only once among the 2504 individuals, leaving

611,871 non-singleton SNPs on chromosome 22. By removing singletons, we deflate the UUUUU

proportion, revealing patterns that previously grouped into the “other” category; the number of

patterns with frequency at least 1% at 𝑔 = 250 increases from 11 to 14. All 11 previous high-

frequency patterns are observed, in addition to two in which allelic types are rare in multiple

super-populations and unobserved in others (RRRUR, RRUUR) and one in which allelic types are

common in some super-populations and rare in others (RCCCC). Patterns containing one R and

four U’s continue to be among the higher-frequency patterns, indicating that these patterns re-

sult from rare variation that is not limited to allelic types present in only a single copy. Similar

observations hold genome-wide (Figure 4.2).

In Biddanda et al. (2020), without a sample-size correction, all loci are biallelic. Hence, no

variant can be entirely unobserved, and Biddanda et al. (2020) did not consider the UUUUU pattern.
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Figure 4.3: Probability as a function of the sample size 𝑔 that across SNPs on chromosome 22, the highest-
probability non-UUUUU pattern calculated using a sample-size correction (eq. 4.4) matches the empirically
observed pattern without sample-size correction.

To facilitate a comparison of the relative probabilities of the remaining 242 patterns between our

analysis and that of Biddanda et al. (2020), we remove the UUUUU pattern at each𝑔 and divide the

remaining pattern frequencies by 1 − ℙ[UUUUU] (Figure 4.1C). With this normalization, three

patterns with frequencies below 1% at𝑔 = 250 in Figure 4.1A now have frequencies greater than or

equal to 1%: RRUUR, RCCCC, and RRRUR. For most patterns, the frequency is largely unaffected

by changes in the sample size𝑔. An interesting exception is RRRRR, for which a particularly strong

effect of the discrete sample size is evident. At small 𝑔, this pattern is observed when exactly one

copy of an allelic type is seen in each of the five super-populations; as described in the example in

the Introduction, common allelic types with frequencies near the frequency cutoff between rare

and common are mistakenly categorized as rare, and as the sample size 𝑔 increases, it is possible

to correctly determine that those allelic types are in fact common.

Figure 4.1C provides a comparison of the sample-size-corrected probabilities with the empirical

pattern frequencies observed in the sample, the frequencies that correspond to the non-sample-

size-corrected calculation of Biddanda et al. (2020) (rightmost column of Figure 4.1C). Although

many of the corrected pattern frequencies differ from the uncorrected frequencies at small 𝑔, at

𝑔 = 500, the sample-size-corrected probability of observing a given pattern is comparable to the
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empirical frequency of that pattern in the full set of loci. A similar general agreement of the em-

pirical frequency to sample-size-corrected probabilities at high 𝑔 is observed in Figure 4.1D, with

singletons excluded. As in the comparison of Figure 4.1B and Figure 4.1A, exclusion of singletons

increases the number of patterns occurring at frequency ≥ 0.01 when 𝑔 = 250, from 13 to 18. Ex-

clusion of singletons reduces frequencies for patterns with one R and four U’s, so that additional

patterns cross the 1% threshold.

A further comparison of sample-size-corrected pattern frequencies with uncorrected frequen-

cies appears in Figure 4.3. In this figure, we evaluate the fraction of loci for which the empirical

pattern at a locus matches the (non-UUUUU) pattern with greatest sample-size-corrected probabil-

ity. Performing this computation at each value of the sample size𝑔, we observe that the probability

that the empirical pattern is a match to the highest-probability pattern with sample-size correction

increases with 𝑔 (Figure 4.3). With singletons included, at 𝑔 = 10, the probability of agreement is

A B
g = 10 g = 500 g = 10 g = 500

Figure 4.4: Pattern probabilities at 𝑔 = 10 and 𝑔 = 500 compared to non-sample-size-corrected pattern
probabilities. The sample-size-corrected and non-sample-size-corrected probabilities are calculated on chro-
mosome 22. (A) All SNPs on chromosome 22, as in Figure 4.1C, with non-sample-size-corrected pattern
probabilities depicted analogously to Figure 3B of Biddanda et al. (2020). (B) Non-singleton SNPs on chro-
mosome 22, as in Figure 4.1D, with non-sample-size-corrected pattern probabilities depicted analogously to
Figure 3C of Biddanda et al. (2020). The colors used to depict pattern probabilities for 𝑔 = 10 and 𝑔 = 500
are the same as those used in Figure 4.1.
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Figure 4.5: Probabilities for groups of patterns for a non-singleton minor allele on chromosome 22, in
samples containing 𝑔 = 500 alleles from each super-population. The figure summarizes the 𝑔 = 500 column
of Figure 4.1B, tabulating the numbers of super-populations in which allelic types are unobserved, rare,
and common. An ordered triple is written ( |U|, |R|, |C|), so that, for example, 2.84% for the entry (0, 1, 4)
indicates that 2.84% of allelic types are unobserved in 0 super-populations, rare in 1 super-population, and
common in 4 super-populations.

66.6%, and at 𝑔 = 500, it is 85.1%. The probabilities are somewhat lower with singletons excluded;

at 𝑔 = 10, the agreement probability is 33.0%, and at 𝑔 = 500, it is 70.1%. Because singleton loci

can only take on one non-UUUUU pattern in the rarefaction calculation (rare in the one super-

population where the allelic type is seen), given that they must be polymorphic in the empirical

data, the empirical pattern necessarily agrees with the highest-probability sample-size-corrected

non-UUUUU pattern.

We accentuate the comparison between sample-size-corrected and uncorrected pattern fre-

quencies by depicting the non-UUUUU pattern frequencies at 𝑔 = 10 and 𝑔 = 500, alongside

depictions of corresponding empirical pattern frequencies in the style of Biddanda et al. (2020)

(Figure 4.4). At the smaller 𝑔 = 10, common variation is unlikely: allelic types at the low end of

the frequency interval for common variation are relatively unlikely to be sampled in such a small

sample size, so that pattern CCCCC has a low probability. However, at 𝑔 = 500, allelic types that

are truly common are more likely to be detected as common. The pattern frequencies for large 𝑔

generally agree with the empirical pattern frequencies without sample-size correction.
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Figure 4.5 provides a summary of pattern frequencies at 𝑔 = 500, collapsing the 243 pat-

terns into 21 groups tabulating the numbers of super-populations in which allelic types are un-

observed, rare, and common. Considering all 243 patterns and excluding singletons as in Fig-

ure 4.1B, we observe, as can be seen in Figure 4.1B, that the highest probabilities occur for groups
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Figure 4.6: Probabilities for groups of patterns for minor alleles on chromosome 22, in samples containing
𝑔 = 500 alleles from each super-population, averaged across all non-singleton loci in non-overlapping 100-
kb sliding windows. Ordered triples are written ( |U|, |R|, |C|), with the entries representing the numbers
of super-populations in which allelic types are unobserved, rare, and common, respectively. Triples are
grouped by color, varying within classes with a given number of super-populations in which allelic types
are common. (A) Probabilities for pattern groups. (B) Local frequency ranks of pattern groups, from 1 to
20 (the pattern in which allelic types are unobserved in all super-populations, (5, 0, 0), is excluded). For
simplicity, only those pattern groups that achieve frequency rank 1 or 2 in at least one window on the
chromosome receive a color. The remaining pattern groups are shaded gray. Note that the first 10 Mb of
chromosome 22 are excluded, as they do not appear in the 1000 Genomes dataset; the centromere is also
excluded.
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(4, 1, 0), (3, 2, 0), (5, 0, 0), and (2, 3, 0), representing allelic types that are rare or unobserved in all

super-populations. Next in probability is (0, 0, 5), representing allelic types that are common in

all super-populations. Probabilities are particularly small for scenarios (4, 0, 1), (3, 0, 2), (2, 0, 3),

and (1, 0, 4) representing variation that is common in some super-populations and unobserved in

others.

4.4.2 Sliding-window analysis

Figure 4.6A shows the 21 groups of patterns as a function of genomic position in 100-kb, non-

overlapping windows on chromosome 22, considering non-singleton loci and samples of size

𝑔 = 500. In general, the probability distribution of the 21 groups shows little variation across

the chromosome, mimicking the pointwise observations in Figure 4.5. The highest-probability

pattern groups are generally those that represent allelic types that are rare in one or more super-

populations and unobserved in the others. A relatively high probability also occurs for allelic types

that are common in all five super-populations.

Figure 4.6B visualizes changes in rank for the groups of patterns as a function of position

along the chromosome, highlighting the pattern groups that enter the top two ranks in at least

one window. This visualization emphasizes that patterns in which allelic types are rare in one or

two super-populations have the highest frequency in most windows. It also uncovers windows

that show a difference from the chromosome-wide average. For example, between 18 and 19 Mb,

a spike occurs in the probability that a minor allele is common in all five super-populations, and

the group (0, 0, 5), which often lies at rank 3, instead jumps to rank 1.

To illustrate one of many deviations from typical pattern probabilities that occur periodically

across the genome (Figure 4.7), we consider an example. In particular, as local changes in the extent

to which allelic types are globally common can reflect evolutionary processes such as balancing

selection, we examine the local change in probabilities in the highly variable HLA region on chro-

mosome 6 (Figure 4.8), where balancing selection is an important phenomenon (Meyer et al., 2018).

Interestingly, in the HLA region (28.5–33.5 Mb), the group (0, 0, 5) has rank 1 in many windows,

as might be expected for a region in which a balancing selection process maintains non-trivial

frequencies for allelic types across many populations.
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Figure 4.7: Probabilities for groups of patterns for minor alleles across all 22 autosomes and the two sex
chromosomes, in samples containing 𝑔 = 500 alleles from each super-population, averaged across all non-
singleton loci in non-overlapping 100-kb sliding windows (𝑔 = 150 for the Y chromosome). Ordered triples
are written ( |U|, |R|, |C|), with the entries representing the numbers of super-populations in which allelic
types are unobserved, rare, and common, respectively. Triples are grouped by color, varying within classes
with a given number of super-populations in which allelic types are common. Each X-axis tick mark cor-
responds to a distance of 10 Mb.
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4.5 Discussion

We have introduced a method for obtaining sample-size-corrected pattern probabilities describing

the geographic distribution of allelic types. The method combines the “Geovar” plots of Biddanda

et al. (2020)—which describe the probabilities with which allelic types are unobserved, rare, or

common in different population groups—with the rarefaction approach of Szpiech et al. (2008),
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Figure 4.8: Probabilities for pattern groups for minor alleles of non-singleton loci appearing between 20–40
Mb on chromosome 6, covering the HLA region (approximately 28.5–33.5 Mb on reference build hg38). The
data analysis and figure design follow Figure 4.6. (A) Probabilities for pattern groups. (B) Local frequency
ranks of pattern groups.
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which mathematically studies geographic distributions of allelic types in subsamples that have

equal size in different groups.

Our analysis finds that with the use of a parameter 𝑔 for the fixed sample size examined in

each of the various groups, probabilities of allelic patterns do change somewhat (Figure 4.1). Most

notably, as𝑔 increases, the probability of classifying an allelic type as entirely unobserved declines

(Figure 4.1A,B). With this pattern omitted, pattern probabilities are relatively stable with 𝑔 (Fig-

ures 4.1C,D). However, 𝑔 must be sufficiently large before the stability emerges. In small samples,

discreteness effects influence the probability that an allelic type is rare in all groups; in using the

rarefaction approach to examine pattern probabilities, such effects can potentially be mitigated by

increasing the maximal frequency regarded as rare in small samples. Such an approach might be

warranted in cases in which some of the groups of interest have samples that are much smaller

than those of other groups, such as in comparisons involving ancient and modern data; suitable

choices of frequency thresholds will depend on the specific sample sizes in data sets and on the un-

derlying distribution of true allele frequencies. Conversely, if all sample sizes are extremely large,

it may be convenient to use eq. 4.6 to distinguish multiple tiers of rare allelic types, for example

for separating frequency classes rare enough to be restricted to one group from higher-frequency

classes whose allelic types are still rare but likely to be found in multiple populations.

With a large sample size, 𝑔 = 500, our pattern probabilities with a sample-size correction

closely match those observed without a sample-size correction in the manner of Biddanda et al.

(2020) (Figure 4.4). This general agreement suggests that the sample sizes in the Biddanda et al.

(2020) super-population assignment—504, 404, 489, 504, and 603 individuals for AFR, EUR, SAS,

EAS, and AMR, respectively—are sufficiently large that differences among them likely had little

effect on the non-sample-size-corrected pattern probabilities of Biddanda et al. (2020) when using

5% as the demarcation between rare and common allelic types. In particular, our pattern probability

calculations with sample-size corrections recapitulate the finding that most allelic types are rare in

one or a few super-populations and unobserved in the others, or common in all super-populations

(Figure 4.5).
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The work of Biddanda et al. (2020) is motivated by a goal not only of describing features of

human genetic similarity and difference, it is also one of many examples of studies that place par-

ticular emphasis on new visualizations to capture those features (e.g. Mountain and Ramakrishnan,

2005; Conrad et al., 2006; Pickrell et al., 2009; Teo and Small, 2010; Rosenberg, 2011; San Lucas et al.,

2012; Petkova et al., 2016; Marcus and Novembre, 2017; Diaz-Papkovich et al., 2019; Greenbaum

et al., 2019; Peter et al., 2020; Battey et al., 2021). Such visualizations provide new representations

of population-genetic statistics for use in understanding processes that affect genetic variation

across populations. Emphases on visualization have been of increasing interest in light of ongo-

ing misrepresentations of human population-genetic findings—particularly the misuse of graphical

visualizations as apparent evidence of unsupportable views of human difference belied by the anal-

yses that underlie the graphics (Carlson et al., 2022). Pattern probabilities, such as those we have

considered here and those of Biddanda et al. (2020), enable a variety of visualizations of human

variation beyond the “Geovar” style. Our Figure 4.1, describing pattern probabilities in the cat-

egories “unobserved,” “rare,” and “common,” updates visualizations of the sample-size-corrected

pattern probabilities of Szpiech et al. (2008), which grouped rare and common allelic types in a

single category of “observed” allelic types. Figure 4.5, summarizing pattern probabilities by the

numbers of super-populations in which allelic types are unobserved, rare, and common, updates

similar summaries that also did not distinguish between rare and common allelic types (Rosenberg

et al., 2002, Figure S1A; Jakobsson et al., 2008, Figure 1A; Rosenberg, 2011, Figure 4A and Table 2;

The 1000 Genomes Project Consortium, 2015, Figure 1A). Finally, Figure 4.6 illustrates that pattern

probabilities can be considered locally as a function of genomic position; this form of analysis can

also suggest signatures of population-genetic processes such as balancing selection in the HLA

region (Figure 4.8).

Our analysis has made use of dense human genomic data. For genomes with a higher density

of variants than the human genome, shorter window sizes may be convenient for measurement of

pattern probabilities. For lower-density data, longer window sizes might be required for accumu-

lating enough variable sites to accurately measure pattern probabilities. Even in the data we have

examined, data quality might vary across windows; this problem might affect the HLA region,

in which high variation levels can lead through technical artifacts to biased estimation of allele
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frequencies (Brandt et al., 2015). The window size can be tuned appropriately to the analysis of

interest.

Our observation that allelic types are generally rare in some human groups and unobserved

in others, or common in most or all groups—here seen with a rarefaction method—has been con-

sistently observed across datasets and choices of population groups (Cavalli-Sforza et al., 1994;

The International HapMap 3 Consortium, 2010; Rosenberg, 2011; The 1000 Genomes Project Con-

sortium, 2015; Biddanda et al., 2020). Analyses enabled by a focus on pattern probabilities, with

the improvements from the sample-size correction introduced here, provide new approaches to

emphasizing and visualizing this fundamental result in human evolutionary genetics.
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Conclusion

By studying human genetic variation both theoretically and empirically, population geneticists

are able to build an accurate understanding of the history of the human species. Here, I have

contributed to advancing that understanding through the development of novel models of coales-

cence times as well as empirical calculations of genetic variation. In chapters 1–3, I have shown

how consanguinity shapes runs of homozygosity and identity-by-descent sharing. These chapters

advance the understanding of a process that has significant consequences for the study of rare

disease in different populations. Simultaneously, in chapter 4, I have developed a framework for

conceptualizing the effects that population-size differences have on the study of rare and common

variation in the human genome.
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